
Fault-Tolerant and Reliable Computation
in Cloud Computing

Jing Deng† Scott C.-H. Huang‡ Yunghsiang S. Han∗ and Julia H. Deng§
†Department of Computer Science, University of North Carolina at Greensboro, Greensboro, NC 27412, USA.

‡Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 300 Taiwan.
∗Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, 106 Taiwan.

§Intelligent Automation, Inc., Rockville, MD, USA.

Abstract—Cloud computing, with its great potentials in low
cost and on-demand services, is a promising computing platform
for both commercial and non-commercial computation clients.
In this work, we investigate the security perspective of scientific
computation in cloud computing. We investigate a cloud selection
strategy to decompose the matrix multiplication problem into
several tasks which will be submitted to different clouds. In
particular, we propose techniques to improve the fault-tolerance
and reliability of a rather general scientific computation: matrix
multiplication. Through our techniques, we demonstrate that
fault-tolerance and reliability against faulty and even malicious
clouds in cloud computing can be achieved.

I. INTRODUCTION

Cloud computing is heavily based on a more traditional
technology: grid computing, which has been researched for
more than 20 years. Cloud computing focuses on the shar-
ing of information and computation in a large network of
nodes, which are quite likely to be owned by different ven-
dors/companies. It is believed that cloud computing has been
one of the sources for success in several major companies such
as Google and Amazon.

Cloud computing is expected to be the platform for next
generation computing, in which users carry thin clients such
as smart phones while storing most of their data in the cloud
and submitting computing tasks to the cloud. A web browser
serves as the interface between clients and the cloud. Operating
system in web browsers allows the users to manage their data
and computation tasks.

One of the main drivers for the interest in cloud comput-
ing is cost and reliability. As personal computers and their
OS and software are becoming more and more complex,
the installation, configuration, update, and removal of such
computer systems require a significant amount of intervention
time from the users or system managers. Instead, outsourcing
the computation tasks eliminates most of such concerns. The
cloud of computer grids provides such services on fee-based,
which can be more cost-efficient for the users than purchasing,
maintaining, and upgrading powerful servers. Furthermore,
resource sharing improves overall resource usage.

Another reason is the adaptation of large number of mobile
devices including smart phones, PDAs, and Netbooks. Such
computing devices usually have high mobility and may only
be powerful enough to run just a web browser. Currently, the
users of these devices are not allowed to perform the full list

of tasks that they normally do on regular computing devices
such as desktop computers and servers. Cloud computing can
provide a seamless interface to allow the users to point their
web browsers to an address and perform the full list of usual
computing tasks such as document preparation, data query,
image processing, and scientific computation.

Overall, cloud computing brings the following three new
aspects in computing resource management: infinite comput-
ing resources available on demand for the perspective of the
end users; zero up-front commitment from the cloud users; and
short-term usage of any high-end computing resources [1], [2].

When a client submits computation tasks toward the cloud,
security of such computation naturally becomes a great con-
cern. This is mainly because the data leave the client and the
computation results will be returning from the cloud, which
are usually considered out of the client’s control. Computation
security has many perspectives [3]. In this work, we focus
on fault tolerance and reliability of scientific computation, in
particular, matrix multiplication. Matrix multiplication serves
as the foundation for many complex problem solving and
optimization. An interesting point of privacy concern arises
when the user does not want to send all computation tasks
toward a single cloud.

We investigate the question of ensuring the correctness of
matrix multiplication in cloud computing with the existence of
faulty or even malicious clouds. In particular, we focus on the
problem of dividing a complex matrix multiplication task into
several subtasks and submitting them to different clouds for
computation. Because different clouds have different cost and
reliability, the selection of such clouds becomes an interesting
problem for cost and reliability concerns.

This paper is organized as follows: in Section II, we
summarize important related works. In Sections III, IV, and
V, we investigate the issues of cloud selection and protection
against faulty and malicious clouds. Section VI, we conclude
the work.

II. RELATED WORK

The landmark paper on fault-tolerant matrix operation was
published in 1984 by Huang and Abraham [4], in which
an Algorithm-Based Fault Tolerance (ABFT) method was
proposed. ABFT uses matrix or vector level checksum in row
and column to detect a faulty processor in multiple processor

systems. The method can be used to detect and correct
errors in matrix operations such as addition, multiplication,
scalar product, and LU-decomposition performed in multiple
processor systems which may have one failed processor. In
our work, however, we focus on the problem of achieving a
certain reliability with the minimum cost in potentially faulty
clouds.

In [5], Mei et al. investigated the problems of dynamic
computing service registration, large data storage and access,
adaptability, and quality discovery in cloud computing. A sur-
vey of trust and privacy in cloud computing was presented by
Cachin et al. [3]. The survey focused on data storage in cloud
grids and how to provide confidentiality, integrity, availability,
and service guarantee. For instance, it is undesirable to test
whether the cloud grids have really stored all of a large amount
of data by retrieving the entire data. Instead, a subtle and much
more efficient proof can used to achieve the goal of “proof of
retrievability” or “proof of data possession”.

Cloud computing is closely related to grid computing.
Chakrabarti et al. discussed security issues in grid computing
in [6]. Since clouds may be formed by multiple grids from
different entities, it then becomes critical to address the
security issues such as confidentiality, integrity, and service
availability. In [7], privacy-friendly client cloud computing
were presented. Wang et al. proposed to use erasure correction
coding in file preparation toward cloud computing storage [8].

III. CLOUD SELECTION

We assume that there are multiple clouds and each cloud
contains multiple servers. The servers on these clouds are
only trusted partially depending on experiences of the client
him/herself and other. We further assume that each of the
cloud’s reliability (either through experience or through rec-
ommendations) and cost are known to the client.

Though there exist many applications for cloud computing,
we focus on scientific computation, in particular, large matrix
multiplication. It can be shown that many complex scientific
computation can be generalized to large matrix multiplications.

Let ai denote i-th row of A and bT
j j-th column of B. Then

D = A×B with dimension !×n is the target matrix which is
to be computed by clouds (see Fig. 1). Matrix A has dimension
of ! × m and matrix B has dimension of m × n. Assume
that a client wants to perform a large matrix multiplication,
D = A × B, over L clouds. The clouds might have different
costs and reliability values. While reliability is referred to as
how reliable and secure a cloud is, cost can represent a number
of objectives: network communication cost, computation cost,
monetary charge for the use of a cloud’s service.

The goal of the client is to minimize its cost under pre-
specified reliability constraint. Without loss of generality,
assume that R1 ≤ R2 ≤ · · · ≤ RL, where Ri is the reliability
of cloud i and i = 1, 2, · · · , L. Let Ci be the cost of cloud
i to perform one row of A multiplying B. Usually, a cloud
with better reliability should have higher cost, but it is not
always true. The values of reliability and cost of a cloud can
be obtained through published price and/or past experience of

2

Row Number:

2

1

1

A=

Row Number:

B=

:

:

:

:

!1

D = A × B =

m × n

! × m

! × n
!

!1

.

.

.

.

.

.

si−1 + 1
si−1 + 2
si−1 + !i

si−1 + 1
si−1 + 2
si−1 + !i

!

.

.

.

.

.

.

· · ·

Fig. 1. The computation of D = A × B through the clouds.

other users with the cloud. Also, cloud providers may provide
various options of clouds with different charge of usage and
different reliability (e.g., faulty rate).
Problem Definition: Assume that the client dispatches !i

rows of A to be multiplied by B in cloud i. The overall cost
for this task is then

C =
L

∑

i=1

Ci!i (1)

and the reliability of the dispatched task is

R = (
L

∑

i=1

Ri!i)/! , (2)

where ! is the number of rows of A and
∑L

i=1 !i = !. Our
objective is as follows: minimize C, subject to R ≥ Rs,
where Rs is a pre-specified reliability requirement.

Note that a different overall reliability model other than (2)
may result in a much simpler solution. For example, if the
overall reliability of the computation is defined as the lowest
value of the reliability of the all clouds working on the
computation, i.e.,

R
def
= min

i=1,2,···L
{Ri} (3)

then a simple assignment is to exclude all clouds with relia-
bility lower than Rs. For the rest of the clouds which have
reliability value higher than Rs, we can choose those with
lowest cost Ci first and use those clouds with higher costs only
if necessary. It is trivial to prove that this choice is optimum.

It is easy to see that searching an optimal solution for the
above problem is to solve an integer programming problem.
The problem can be rewritten to a standard integer program-

2

TABLE I
EXAMPLE OF DISPATCHING JOBS TO THREE CLOUDS WITH DIFFERENT

RELIABILITY AND COST. THE JOB HAS ! = 10 ROWS OF MULTIPLICATION

AND THE RELIABILITY REQUIREMENT Rs = 2.6. IT TURNS OUT THAT THE

BEST ASSIGNMENT IS (2, 8, 0) AS SHOWN IN ASSIGNMENT 6. THESE

NUMBERS ARE FOR ILLUSTRATION PURPOSE ONLY. REAL RELIABILITY

VALUES COULD BE DIFFERENT TO WHAT ARE SHOWN HERE.

Cloud1 Cloud2 Cloud3
(R, C) (1,1) (3,2) (4,3) Overall

Assignment 1 2 0 8 (3.4, 26)
Assignment 2 10 0 0 (1, 10)
Assignment 3 5 0 5 (2.5, 20)
Assignment 4 0 10 0 (3, 20)
Assignment 5 4 2 4 (2.6, 20)
Assignment 6 2 8 0 (2.6, 18)

ming problem as follows:

Minimize C =
∑L

i=1 Ci!i

Subject to R =
(

∑L
i=1 Ri!i

)/

! ≥ Rs (4)
∑L

i=1 !i = ! !i is integer .

Any standard tool for solving integer programming can be
used to solve (4), e.g., lp solve [9].

We present an example of three clouds in Table I, which
shows several different assignments. Next we present some
properties of our integer programming problem which can help
to fasten the search procedure.

We have the following lemma regarding to those clouds
with higher cost but lower reliability:
Lemma 1: If there exist two clouds i and j such that

Rj ≥ Ri and Cj < Ci, then cloud i should be ignored in
the assignment process.

Proof: Without loss of generality, we assume i <
j. Assume that there is an optimal assignment A =
{!1, · · · , !i, · · · , !j , · · · , !L} such that !i > 0. Construct a
new assignment A′ = {!′1, · · · , !′i, · · · , !′j , · · · , !′L}, where all
elements are the same with A except !i and !j:

!′j = !i + !j

!′i = 0 . (5)

Therefore, the cost and reliability of assignment A′ can be
expressed as

C(A′) =
L

∑

k=1

Ck!′k =
L

∑

k=1

Ck!k + Cj!i − Ci!i < C(A) (6)

and

R(A′) =
L

∑

k=1

Rk!′k/!

=
L

∑

k=1

Ck!k/! + Rj!i/! − Ri!i/!

= R(A) + (Rj − Ri)!i/!

≥ R(A) , (7)

where we have used the inequalities of Cj < Ci and Rj ≥ Ri.
Since assignment A′ has a lower cost and a reliability that

is at least as good as A, it contradicts to the assumption that
A is an optimal assignment. Hence, it is obvious that cloud i
should be ignored.

Corollary 1: If there exist two clouds i and j such that
Rj > Ri and Cj ≤ Ci, then cloud i can be ignored in the
assignment process.

The proof of Corollary 1 is similar to that of Lemma 1
and therefore omitted. Please note that the difference between
Lemma 1 and Corollary 1 is the location of the equal sign.
Therefore, we can assume a strictly increasing function in Ci

and Ri, where i ∈ {1, 2, · · · , L}. That is, C1 < C2 < · · · <
CL and R1 < R2 < · · · < RL.

It is obvious that there is no solution if Rs > RL. Hence,
in this section we assume that Rs ≤ RL. Denote the optimal
assignment A∗ = {!∗1, · · · , !∗L}. If Rs ≤ R1, then !∗1 = ! and
!∗i = 0 for i &= 1. We have the following lemmas regarding to
the case R1 < Rs ≤ RL.
Lemma 2: Given Rs ≥ Rt, t ∈ {1, 2, · · · , L − 1}. Then

t
∑

i=1

!∗i ≤

⌊

RL − Rs

RL − Rt
!

⌋

, (8)

where 'x(is the largest integer that is no more than x.
Proof: The reliability of the assignment A∗ can be

computed as

R =
L

∑

i=1

!∗i Ri/!

=
t

∑

i=1

!∗i Ri/! +
L

∑

i=t+1

!∗i Ri/!

≤
t

∑

i=1

!∗i Rt/! +
L

∑

i=t+1

!∗i RL/!

=

(

t
∑

i=1

!∗i

)

· Rt/! +

[

! −

(

t
∑

i=1

!∗i

)]

· RL/! . (9)

Using inequality R ≥ Rs and re-arranging (9), we have
t

∑

i=1

!∗i ≤
RL − Rs

RL − Rt
! . (10)

And we have the following lemma:
Lemma 3: Given Rs ≤ Rt+1, t ∈ {1, 2, · · · , L − 1}. Then

t
∑

i=1

!∗i ≥

⌈

Rt+1 − Rs

Rt+1 − R1
!

⌉

, (11)

where)x* is the smallest integer that is no less than x.
Proof: Detailed proof is omitted due to page limit, but

outlined below: an optimum assignment is assumed first. Then
a new assignment will be constructed based on the optimum
assignment but with a lower cost.

3

In the example discussed in Table I, we can see from
Lemma 2 that !∗1 < 4−2.6

4−1 ×10 = 4.3. Therefore, the maximum
allowable value for !∗1 is 4. Based on Lemma 3, we can see
that !∗1 ≥ 3−2.6

3−1 × 10 = 2. The minimum value for !∗1 is 2.
Note that t = 1 in this example, with R1 < Rs < R2.

When RL < Rs, there is no solution for the above
integer programming problem. In this case, we need to add
redundancy to increase reliability of each cloud. Since the
client has no control over which grids to choose from, it
needs to add redundancy by itself to increase reliability of
computation results. Next we present a method to increase
reliability of computation results by error-detection codes.

IV. PROTECTION AGAINST FAULTY CLOUDS

In this section, we propose a countermeasure against faulty
clouds. We will show that, by appropriately choosing certain
system parameters, the detection failure probability of our
scheme (the probability that a cloud returns incorrect results
and the results are undetected by the client) is negligible.
Without loss of generality, we assume that the (si−1 + 1)-th,
(si−1 + 2)-th,. . . , si-th rows of A are dispatched to cloud i,
where si =

∑i
j=1 !j with s0 = 0. Let ri = (ri1, ri2, . . . , ri!i

),
rij ∈ {1,−1} for j = 1, 2, . . . , !i, be randomly generated
sequences with length !i, where i = 1, . . . , L. The client first
multiplies from the (si−1 +1)-th row to si-th row of A by ri

to generate a parity-check row, ci, for Cloud i. That is,

ci =
!i

∑

j=1

rijasi−1+j , i = 1, . . . , L . (12)

Note that ci is a row array with m elements.
Since all elements of ri are 1 or −1, the computation

involved in (12) is only addition and subtraction. Usually L
is also much smaller than ! such that ciB, i = 1, 2, · · · , L
can be performed in the most reliable cloud or even at client
itself. Let

yi = ciB . (13)

By (12), yi can also be expressed as

y′
i =

!i
∑

j=1

rijdsi−1+j , (14)

where dj is the j-th row of matrix D.
The client proceeds in the following way: it first computes

yi using (12) and (13). When the rows of D are received from
Cloud i, the client computes y′

i based on (14). If yi and y′
i

match with each other, the results from Cloud i are determined
to be error-free. Otherwise, errors must have occurred. The
job originally sent to the i-th cloud should be sent to the
cheapest non-faulty cloud with reliability no less than i-th
cloud. After the client obtains new results from the cloud, it
repeats the above fault-tolerant procedure. This process lasts
until all results passed the check or no non-faulty cloud can
be used to recompute new results.

The fault-tolerance strength is dependent on the probability
that (13) and (14) are equal given that at least one asi−1+jB &=

dsi−1+j . We compute the detection failure probability as
follows: in each column of yi, no matter how many faulty
computational results generated by Cloud i, the only way to
generate a correct column in yi is that the last element matches
the difference between yi and sum of rest of computational
results. Hence, the probability that the client cannot detect
the faulty results generated by any cloud in this column is
1

2W , where W is the number of bits to represent any element
in A (B). Note that there are n columns in yi and all the
elements in yi and y′

i must match. Therefore, the detection
failure probability, which defined as the probability that the i-
th cloud returns incorrect results, but the client cannot detect
the error, is

PMD =
1

2nW
. (15)

Obviously, when W is reasonably large, the value of PMD

approaches 0.

V. PROTECTION AGAINST MALICIOUS CLOUDS

While the above scheme works well against random faulty
clouds, it does not protect the client from malicious clouds.
This is mainly due to the overly simplified correctness check.
For instance, a malicious cloud can intentionally increase
all the elements in two rows by the same amount. If the
corresponding rij of these two rows are different, the client
cannot detect such intentional changes. The chance of any two
rij being different is 1/2, hence, the chance of a malicious
cloud successfully fooling the client to accept incorrect results
is 1/2.

We can explain intuitively why modifying two rows works
best for the malicious cloud. Suppose the malicious cloud
guesses several coefficients rij . It will certainly be better to
just guess two out of these coefficients and leave the rest alone.
This is because of the larger coefficient space.

We have the following theorem and proof.
Theorem 1: The chance of a malicious cloud tricking the

client to accept a result other than the correct one can be as
high as 1/2.

Proof: Assume that Cloud i is malicious and it modified1

asi−1+m1
, asi−1+m2

, . . . ,asi−1+mq
.

Let ∆si−1+m1
, ∆si−1+m2

, . . . ,∆si−1+mq
be the correspond-

ing differences between modified rows and original rows. If
(rim1

, . . . , rimq
) is a solution to

q
∑

j=1

xj∆si−1+mj
= 0, (16)

then Cloud i successfully forges the computational results
which cannot be detected by the client. Next assume that
|∆si−1+j | &= |∆si−1+k| for k = 1, 2, · · · , q and k &= j.
Let (rim1

, . . . , rj , . . . , rimq
) be any solution of (16). Then

(rim1
, . . . ,−rj , . . . , rimq

) is not a solution and any other

1Cloud i can modify B or even di. However, these modifications are
equivalent to a modification on a subset of rows of A sent to it.

4

solutions differ from it by at least two positions. Hence, any
solution of (16) is one-to-one corresponding to a non-solution
such that the number of solutions to (16) is no more than half
of the total number of possible values for (rim1

, . . . , rimq
).

That is, the probability that Cloud i to successfully forge the
computational results is no more than 1/2. Next we consider
the case |∆j | = |∆k| for j, k = 1, 2, · · · , q. It is easy to
see that if (rim1

, . . . , rj , . . . , rimq
) is a solution of (16), then

(rim1
, . . . , rj , . . . ,−rimq

) is a solution of
q−1
∑

j=1

xj∆si−1+mj
+ xq(−∆si−1+mq

) = 0 .

Hence, we only need to evaluate the number of solutions to
q

∑

j=1

xj∆ = 0 ,

where ∆ = |∆si−1+mj
| for j = 1, 2, · · · , q which is

at most half of the total number of possible values for
(rim1

, . . . , rimq
). That is, a malicious cloud i can modify

computation results and trick the client to accept it with a
probability as high as 1/2.

Note that this does not mean that the malicious cloud can
always trick the client to accept any arbitrary result with
probability of 1/2. The result has to be maneuvered in a
certain way in order to achieve such a surprisingly high success
probability, e.g., modifying several rows in a certain way.

In order to protect the client’s computation from such
attacks from malicious clouds, we propose to extend the parity-
check row given in (12) to k rows. Similarly to (12), we define
a matrix Ri with dimension of k × !i.

Ci = Ri[asi−1+1 asi−1+2 · · · asi−1+!i
]T , (17)

where Ri = [rmj], m = 1, 2, · · ·k, j = 1, 2, · · · , !i, and
superscript T represents transposition operation. Note that the
computation of CiB can be sent to another cloud for the sake
of error isolation and malicious cloud detection. For example,
these k rows of contents can be simply attached to the end of
the !j row of A matrix for cloud j.

Since now there are k parity checks instead of 1, it is more
difficult for a malicious cloud to tamper with the computation
results and trick the client to accept them. Similarly, a mali-
cious cloud’s best chance is to change two rows in the results.
Without loss of generality, we can assume that the malicious
Cloud i modifies the first two rows of A sent to it with quantity
∆. By a similar argument to one parity check case,

rm1∆ + rm2∆ = 0, for m = 1, 2, . . . , k (18)

is a necessary condition for the client to accept the tampered
results. Since all rmj , m = 1, 2, · · · , k, j = 1, 2, · · · , !i,
are randomly generated with values 1,−1, the probability to
satisfy (18) is (1/2)k. In fact, we have the following theorem:
Theorem 2: Assume the k-parity check is implemented by

the client. If a malicious cloud tries to tamper with the
computation results, the chance that it succeeds is at most
(1/2)k.

Proof:
Assume that |∆si−1+j | &= |∆si−1+k| for k = 1, 2, · · · , q

and k &= j. By an argument similar to the case of one parity
check, we know that the probability of successfully forging
computational results is no more than

1

1 + 2q(k−1)
, (19)

where q is the number of rows of A that are modified by the
malicious cloud. Since q, k ≥ 2,

1

1 + 2q(k−1)
≤

1

1 + 22(k−1)
≤

1

1 + 2k
. (20)

Therefore, (19) is no greater than (1/2)k. Similarly, we can
prove that the probability is no more than (1/2)k when ∆ =
|∆si−1+mj

| for j = 1, 2, · · · , q. We have just proven that the
best chance of a malicious cloud tricking the client to accept
a tampered result is (1/2)k.

VI. CONCLUSIONS

Cloud computing is expected to the next generation com-
putation platform for commercial and non-commercial users.
In this work, we have investigated the fault tolerance and
reliability issues of cloud computing in scientific computation,
in particular matrix multiplication. Our analysis showed that,
with careful design and cloud selection, computation in the
cloud can be fault-tolerant and reliable.

In our future work, we will provide simulation performance
of our scheme and compare it with other related schemes. We
will also investigate the fault tolerance and reliability issues
in a broader range of computations. The issue of privacy
protection of the client’s data and results will be studied as
well.

REFERENCES

[1] M. Armbrust, A. Fox, and et al., “Above the clouds: A berkeley view
of cloud computing,” UC Berkeley, Tech. Rep. UCB/EECS-2009-28,
February 2009.

[2] K. Birman, G. Chockler, and R. van Renesse, “Toward a cloud computing
research agenda,” SIGACT News, vol. 40, no. 2, pp. 68–80, 2009.

[3] C. Cachin, I. Keidar, and A. Shraer, “Trusting the cloud,” ACM SIGACT
News, vol. 40, no. 2, pp. 81–86, June 2009.

[4] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Transactions on Computer, vol. 33, no. 6, pp.
518–528, 1984.

[5] L. Mei, W. Chan, and T. Tse, “A tale of clouds: Paradigm comparisons and
some thoughts on research issues,” Asia-Pacific Conference on Services
Computing. 2006 IEEE, vol. 0, pp. 464–469, 2008.

[6] A. Chakrabarti, A. Damodaran, and S. Sengupta, “Grid computing
security: A taxonomy,” IEEE Security and Privacy, vol. 6, no. 1, pp.
44–51, 2008.

[7] M. J. Miller and N. H. Vaidya, “Leveraging channel diversity for key
establishment in wireless sensor networks,” in Proc. of the 25th Con-
ference of the IEEE Communications Society (Infocom ’06), Barcelona,
Spain, April 23-29 2006.

[8] C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring data storage security
in cloud computing,” IIT, Tech. Rep., 2009.

[9] http://lpsolve.sourceforge.net/5.5/.

5

