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Abstract—In this paper, we consider a multiple unmanned
aerial vehicles (UAVs) network, where low-power ground users
(GUs) periodically sense the environmental information and need
to upload the recent sensing information to a base station (BS).
The GUs firstly backscatter their information to the UAVs and
then the UAVs transmit the information to the BS by the non-
orthogonal multiple access (NOMA) transmissions. Our goal is to
minimize the long-term time-averaged age-of-information (AoI)
by jointly optimizing the UAV’s sensing scheduling, transmission
control, and trajectories under the constraints of the GUs’
maximum expected AoI. To solve this problem, we propose
the Lyapunov-driven hierarchical proximal policy optimization
framework, named Lya-HPPO, to decouple the multi-stage AoI
minimization problem into several control subproblems. In
each control subproblem, the UAVs’ sensing scheduling and
transmission control are firstly determined by the outer-loop
DRL approach, and then the inner-loop optimization module
is to optimize the UAVs’ trajectories. Simulation results verify
that the proposed Lya-HPPO framework converges very fast to
a stable value and can make online decisions in real time, while
guaranteeing the long-term data buffer and AoI stability.

Index Terms—Unmanned aerial vehicle (UAV), backscatter,
non-orthogonal multiple access (NOMA), trajectory planning,
Lyapunov optimization, deep reinforcement learning (DRL).

I. INTRODUCTION

The emerging applications of the future Internet of Things
(IoT) have a higher requirement on efficient, reliable, and
real-time information sensing, such as in autonomous driving,
virtual reality, and so on [1]. As such, the information fresh-
ness is very important to make accurate control decision. The
age-of-information (AoI) as a novel metric of the information
freshness was proposed in [2], which is defined as the time
elapsed since the most recent data update event. A lower
AoI indicates that the sensing information is more recent
and reflects the current state accurately, while a higher AoI
implies a larger temporal time delay since the generation
of the sensing data, resulting in inconsistencies with the
current state of the environment. Delayed delivery of sensing
information may potentially result in erroneous control or even
catastrophic consequences [3]. However, due to the stochastic
nature of wireless environment and limited channel capacity,
the timely delivery of the sensing information is challenging.

To address the challenges posed by wireless environment,
the unmanned aerial vehicle (UAV) is considered as a promis-

ing solution to improve the sensing and transmitting capac-
ity across expansive geographical areas, such as air quality
monitoring [4], [5], intelligent transportation system [6], [7],
and disaster rescue [8], [9]. Owning to the fast development,
high mobility, and ultra-reliability, the UAVs can provide
strong line-of-sight links in real-time communication, which
can maintain the sensing information fresh at the destination
by frequent information sensing and transmitting.

However, in the UAV sensing phase, the channel compe-
tition among different GUs will cause channel congestion,
resulting in untimely information sensing. Delayed informa-
tion sensing is detrimental to reducing overall AoI. Hence,
the UAVs’ sensing scheduling is very vital to keep the GUs’
information fresh. Specifically, the GU with small AoI can
receive more accurate decision when it frequently upload its
information to the UAVs. However, such a sensing scheduling
will result in a large overall AoI due to the continuous
increase of other unscheduled GUs’ AoIs. Another idea is
to give priority to the GU with large AoI to upload its
information, which can suppress excessive peak AoI. Many
research work mainly focus on sensing scheduling in single-
hop UAV-assisted network for data collection. However, the
effective processing of the GUs’ information requires the
UAVs’ frequent information sensing and transmitting to the
BS. Therefore, our considered UAV-assisted network involves
two-hop scheduling: i) the UAVs’ sensing scheduling for the
GUs’, followed by (ii) the information transmission control
from the UAVs to the BS. Once the UAVs complete the
information sensing, we hope that the UAVs can transmit
the information to the BS with the minimum latency. Hence,
we employ NOMA transmission with successive interference
cancellatio (SIC) mechanism to minimize information trans-
mission delay and improve communication capacity.

In particular, the UAVs’ two-hop scheduling is closely
related to the UAVs’ trajectories. If the UAV flies closer to
a GU with urgent uploading demand, its data can be timely
processed, otherwise the GU’s data will get older and lose
its meaning. When the UAVs are positioned at a consid-
erable distance from each other, they could be scheduled
simultaneously to enhance the communication capacity owing
to the reduced interference, otherwise they will experience
strong interference. The above analysis motivates us to jointly
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Fig. 1: A NOMA-aided multi-UAV-assisted wireless network

optimize the UAVs’ sensing scheduling, transmission control
and trajectories to reduce the overall AoI.

In this paper, we aim to minimize the long-term time-
averaged AoI in a NOMA-aided multi-UAV-assisted wireless
network, consisting of a BS, multiple GUs and multiple UAVs,
sensing the environmental information from different physical
processes. We formulate the AoI minimization as a multi-stage
stochastic optimization problem, subject to the UAVs’ queue
stability constraints and the GUs’ maximum AoI requirement.
We devise a Lya-HPPO framework to solve the problem. The
Lya-HPPO framework first use the Lyapunov optimization
framework to convert the multi-stage problem into a series
of per-slot subproblems. Then, we use a hierarchical-PPO
algorithm to solve each subproblem. Specifically, we adapt the
UAVs’ sensing scheduling and transmission control policies
by the outer-loop DRL algorithm (e.g., PPO algorithm [10])
and use the inner-loop optimization module (e.g., succes-
sive convex approximation (SCA) approach) to optimize the
UAVs’ trajectories. Simulation results are presented to validate
that, the Lya-HPPO framework can make online sensing
scheduling and transmission control decisions in real time,
while guaranteeing the long-term data buffer and AoI stability.
Compared to the baseline schemes, the Lya-HPPO framework
converges very fast to a stable value.

II. SYSTEM MODEL

A. Network Architecture

Consider a NOMA-aided multi-UAV-assisted wireless net-
work in Fig. 1, which consists of one BS, K GUs and
M UAVs. The UAVs are employed to collect sensing data
form K GUs, randomly distributed in an open area, and
then transmit them to the BS for information update. The
sets of GUs and UAVs are denoted as K , {1, 2, ...,K}
and M , {1, 2, ...,M}, respectively. The UAVs can be
deployed as the relays to assist data transmissions from the
GUs to the BS. We consider a 3-dimensional coordinate,
where the locations of the UAV-m and the GU-k in the i-
th time slot are denoted by `m(i) = (xm(i), ym(i), zm(i))
and qk = (xk, yk, 0), respectively. Without loss of generality,
assume that all UAVs fly at a fixed altitude, i.e., zm(i) = H .
Denote q0 = (x0, y0, 0) as the BS’s location.

We consider a time-slotted multi-access protocol. Each
frame is divided into multiple time slots with equal duration.
The set of all time slots is denoted by I , {1, 2, ..., I}.
Each time slot tm(i) includes two parts, i.e., sensing duration
tsm(i) and transmitting duration tfm(i). Thus, the feasible time
allocation in the i-th time slot is determined as follows:

tsm(i) + tfm(i) ≤ 1, ∀m ∈M. (1)

The length of each time slot is sufficiently small such that each
UAV’s location is considered as approximately unchanged
within each time slot even at the maximum speed. The UAVs
must adhere to collision avoidance conditions and maximum
speed constraints Vmax in each time slot [11] as follows:

‖`m(i)− `m′(i)‖ ≥ dmin, ∀m,m′ ∈M, m 6= m′, (2a)
‖`m(i)− `m(i− 1)‖ ≤ Vmax, ∀m ∈M, (2b)

where dmin is the minimum distance between any two UAVs
to ensure safety. Let the channel vector between the UAV-m
and GU-k be modelled as hm,k(i) =

√
ρ‖`m(i) − qk‖−1,

where ρ represents the channel power gain at the reference
distance of 1 meter.

B. Data Sensing and Transmission Model

1) Dynamic Sensing Scheduling and Transmission Con-
trol Decision: At each time slot, our considered NOMA-
aided multi-UAV-assisted wireless network involves a two-
hop scheduling process: (i) sensing information from a GU
by each UAV in the sensing phase; (ii) the multi-UAV trans-
mission control in the transmitting phase. In the UAV sensing
phase, we define a binary variable βm,k(i) ∈ {0, 1} to char-
acterize the UAVs’ sensing scheduling. We have βm,k(i) = 1
if the GU-k is scheduled by the UAV-m in the i-th time slot,
and βm,k(i) = 0 otherwise. We assume that each UAV can
select at most one GU in a time slot, which results in the
following sensing scheduling constraint:∑

m∈M
βm,k(i) ≤ 1,

∑
k∈K

βm,k(i) ≤ 1, ∀m ∈M. (3)

Once completing sensing the GUs’ information, the UAVs
transmit the sensing information to the BS via NOMA trans-
missions to reduce the communication delay. Specifically, we
define a binary variable αm(i) ∈ {0, 1} to indicate that the
UAV-m is scheduled to transmit the cached information to the
BS in the i-th time slot if αm(i) = 1, otherwise αm(i) = 0.
Denote the distance between the UAV-m and the BS in the i-
th time slot as dm(i). The UAVs’ transmission control policies
and trajectory planning are intricately coupled, as demonstrat-
ed in the three cases in Fig. 1. Specifically, the UAVs’ location
changes can lead to various transmission control policies. In
case I, the UAVs are positioned at nearly equidistant distances
from the BS, i.e., d1 ≈ d2 ≈ d3, resulting in small channel
differences. In this case, the UAVs are less inclined to transmit
information concurrently due to the potential interference. In
contrast, the UAVs are positioned at varying distances from
the BS in case III, i.e., d2 > d1 > d3. Furthermore, different
transmission control policies can modify the UAVs’ flying
paths. From case I to case III, it can be seen that when all



UAVs opt to transmit information simultaneously to the BS,
they tend to navigate to different locations away from the
BS to exploit substantial channel variations, thereby achieving
higher transmission rates.

2) Multi-UAV-aided Data Sensing and Transmitting: Sim-
ilar to [12], each GU is equipped with the passive backscatter
communication module and is capable of transmitting its
sensing information to the UAV by backscattering the inci-
dent RF signal from the UAV. Given the UAVs’ hovering
positions, the GUs can be selected to upload their sensing
data via backscatter communications. The received signal-to-
noise-ratio of the UAV-m from the GU-k can be represented
as γm,k(i) = ps|Γ0|2|hm,k(i)|2|hm,k(i)|2/σ2, where ps is
the UAV’s transmit power. Thus, the UAV-m’s sensing data
from the GU-k in the i-th time slot can be represented
as om,k(i) = βm,k(i)ts,m(i) log2(1 + γm,k(i)). The UAVs
collect the sensing information from the GUs and store them
into the data buffers, and then transmit the cached data
to the BS via NOMA transmissions. The scheduled UAVs
are ordered according to their channel conditions. We can
decode information first from the UAV with best channel
condition. Without abuse of notations, let M denote the
ordered set of UAVs according to their channel conditions
with h1,0(i) ≥ . . . ≥ hM,0(i). Based on the discussion
above, the signal-to-interference-noise-ratio of the UAV-m
at the BS is expressed as γm,0(i) =

ςm,0(i)∑M
m′=m+1

ςm′,0(i)+1
,

where ςm,0(i) = αm(i)ps|hm,0(i)|2/σ2. Thus, the transmit-
ting throughput of the UAV-m in the i-th time slot can be
represented orm(i) = tr,m(i) log2 (1 + γm,0(i)). The queue
backlog in the i-th time slot of the UAV-m’s buffer as Qm(i),
which evolves as follows:

Qm(i+ 1) = max [Qm(i)− orm(i), 0] + osm(i), (4)

where osm(i) =
∑
k=1∈K om,k(i) represents the UAV-m’s

sensing data. Stability is an important metric to characterize
buffer, which requires that the time-averaged arrival rate is
smaller than the time-averaged departure rate, namely,

lim
I→∞

1

I

∑
i∈I

E [osm(i)] ≤ lim
I→∞

1

I

∑
i∈I

E [orm(i)] , (5)

where the expectation is taken over the potential randomness
of the channels and the scheduling decision.

C. AoI Dynamics Model
We can use the number of slots in which data wait for

processing in the GUs’ buffers to indicate AoI and we evaluate
the AoI of the GU-k at the end of each time slot. Due to
limited channel capacity, the GU-k may not be able to upload
all data successfully to the UAV-m within the sensing sub-
slot ts,m(i). At each time slot, the data size that could be
generated by the GU-k is denoted by ck(i). In this case,
we denote Pk(i) , sk(i)

ck(i) as the fraction of successfully
uploaded data by the GU-k, where sk(i) ,

∑
m∈M om,k(i)

denotes the uploaded data size of the GU-k. According to
this definition, we update the GU-k’s AoI for its partially
successfully transmitted information as follows:

ak(i+ 1) = (1− Pk(i))(ak(i) + 1), ∀k ∈ K. (6)

Let amax represent the maximum expected time average age
requirement of the GU-k, and we require that the expected
time average cost is upper bounded as follows:

lim
I→∞

1

I

I−1∑
i=0

E [ak(i+ 1)] ≤ amax. (7)

The expectation is taken with respect to the random channel
and the UAV’s sensing scheduling and transmission control.

To reflect the age of each GU’s data before uploading to
the UAV, we can use a virtual AoI queue Zk(i) to represent
the data timeliness as in [13], which provides a generalized
method to approximate a stochastic inequality by using a vir-
tual queue system. Hence, we show a simplified reformulation
of the time-averaged constraint as follows:

Zk(i+ 1) = max[Zk(i)− amax, 0] + ak(i+ 1). (8)

Please refer to our previous work [14] for detailed proof.

III. LYAPUNOV OPTIMIZATION FOR AOI MINIMIZATION

A. Long-term time-averaged AoI Minimization

We aim to minimize the long-term time-averaged AoI
of all GUs by optimizing the UAVs’ sensing scheduling
and transmission control Φ , (βm,k(i), αm(i))k∈K,m∈M,
mobility control (`, t) , (`m(i), ts,m(i), tr,m(i))m∈M. The
AoI performance has complicated couplings with the above
control variables. For simplicity, we define the time-averaged
AoI as follows:

Ā(Φ, `, t) = lim
I→∞

1

IK
E

[∑
i∈I

∑
k∈K

ak(i+ 1)

]
. (9)

Till this point, we can formulate the AoI minimization prob-
lem as follows:

min
Φ,`,t

Ā(Φ, `, t), s.t. (1)− (8). (10)

Problem (10) is challenging to solve due to the follow-
ing reasons. Firstly, the optimization of the UAVs’ sensing
scheduling and transmission control policies are combinatorial
as it defines a discrete feasible set. Secondly, even with the
fixed sensing scheduling and transmission control policies,
the UAVs’ trajectory planning and time allocation are spatial-
temporally coupled in a dynamic program. To overcome these
difficulties, we devise a Lya-HPPO framework for problem
(10). The overall algorithm sketch is shown in Fig. 2. First,
we decompose the multi-stage stochastic AoI minimization
problem into a series of per-slot deterministic control sub-
problems via Lyapunov optimization framework. After the
Lyapunov decomposition, the per-slot control subproblem is
still hard to solve. Hence, we further devise a hierarchical-
PPO structure for the per-slot subproblem, which mainly
includes the outer-loop learning module for the UAVs’ sensing
scheduling and transmission control policies and the inner-
loop optimization module for the UAVs’ mobility control.
Then, we can update the system queue states in the next time
slot according to (4) and (8), respectively.
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B. Lya-HPPO framework for Per-slot Decomposition

To solve problem (10), we define a quadratic Lyapunov
function L(Θ(i)) as follows:

L(Θ(i)) ,
1

2

∑
k∈K

(Zk(i))2 +
1

2

∑
m∈M

(Qm(i))2, (11)

where Θ(i) = [Zk(i), Qm(i)] is the queue backlog vector.
Therefore, we can further characterize the queue stability
by using the expected change of the Lyapunov function in
successive time slots, which is termed as the drift of the
Lyapunov function and denoted as follows:

∆L(Θ(i)) , E
[
L(Θ(i+ 1))− L(Θ(i))|Θ(i)

]
. (12)

To stabilize the system queue Θ(i), we aim to minimize
the increment of the queue size, i.e., the Lyapunov drift
∆L(Θ(i)). Meanwhile, we need to minimize all GUs’ AoI
values to keep information fresh. Thus, we have the following
minimization objective in each time slot:

T (Θ(i)) , ∆L(Θ(i)) +V
∑
k∈K

E
[
ak(i+ 1)|Θ(i)

]
, (13)

where V is the constant to balance the queue backlog and
overall AoI. To this point, we can replace the stochastic
objective in (10) by the new minimization target in (13) and
focus on the per-slot control problem with the known states
of all queues. However, it is still difficult to minimize (13)
directly. Instead, we can derive an upper bound to (13) and
minimize the upper bound as an approximation. By a few
manipulations similar to that in [14], the Lyapunov drift-plus-
penalty function is upper bounded as follows:

T (Θ(i)) ≤ B + U(Φ(i), `(i), t(i)), (14)

where B = 1
2

∑
k∈K((ak(i) + 1)2 + a2

max) −∑
k∈K(Zk(i)amax + (Zk(i) + V )(ak(i) + 1)) +

1
2

∑
m∈M

[
(or,max
m )2 + (os,max

m )2
]

is a finite constant
and U(Φ(i), `(i), t(i)) =

∑
m∈MQm(i)(osm(i) − orm(i))−∑K

k=1(V + Zk(i))Pk(i)(ak(i) + 1). Please refer to [14] for
the detailed proof of the above upper bound.

For simplicity, we drop the time index in the per-slot
control problem (13). Once we observe the queue states at the
beginning of the i-th time slot, the minimization of T (Θ(i))
in (13) can be approximated by the following problem:

min
Φ,`,t

U(Φ, `, t) s.t. (1)− (3). (15)

Algorithm 1 Lya-HPPO algorithm for UAVs’ sensing
scheduling and transmission control in the i-th time slot

1: Initialization:DNN weight parameters θ, policy network
πθold , t ← 0, atk = ak(i − 1), Qt

m = Qm(i − 1), `tm =
`m(i− 1), Ht

m = Hm(i− 1);
2: for Episode = 1, 2, ...,Max do
3: repeat
4: Observe the system state (at,Qt, `t,Ht);
5: Choose the outer-loop action Φt for joint scheduling;
6: Optimize UAVs’ mobility control (`t, tt) in (17);
7: Execute the action xt , (Φt, `t, tt);
8: Execute the reward vt(st,xt);
9: Buffer the transition (st,xt, vt, st+1);

10: t← t+ 1
11: until t = T ;
12: Take samples from the experience replay buffer;
13: Update the DNN parameters by using PPO algorithm.
14: end for

Instead of the stochastic optimization in (10), now we focus on
the deterministic subproblem (15), which becomes a mixed-
integer problem and still difficult to solve directly. In the fol-
lowing, we devise a hierarchical-PPO algorithm for problem
(15), which mainly includes the outer-loop learning for the
UAVs’ sensing scheduling and transmission control, as well
as the inner-loop optimization for the UAVs’ mobility control.
Thus, in each iteration, the DRL agent first determines the
UAVs’ sensing scheduling and transmission control based on
the past observations of the UAVs’ data statues and the GUs’
AoI dynamics. Then, the inner-loop optimization of the UAVs’
mobility control becomes much easier by using the SCA
method. Finally, the BS can execute the joint action (Φ, `, t) in
the t-th step and then update the system states. The agent can
accelerate the learning process since the optimization module
can provide partial actions.

C. Outer-Loop Learning for UAV’s Sensing Scheduling and
Transmission Control

The outer-loop DRL approach aims to update the UAVs’
sensing scheduling and transmission control policies by con-
tinuously interacting with the network environment. We can
reformulate the UAVs’ sensing scheduling and and transmis-
sion control optimization problem into the Markov decision
process, which can be characterized by a tuple (S,A,R).
The state space S denotes the set of all system states. In
the t-th decision epoch, the system’s state st ∈ S includes
all GUs’ AoI values, denoted as a vector at , [at1, ..., a

t
K ],

the UAVs’ data buffer state Qt , [Qt1, ..., Q
t
M ], the UAVs’

position `t , [`t1, ..., `
t
M ], and the channel conditions Ht ,

[ht1,0, ..., h
t
m,K ]; Hence, we can define the system state in each

decision epoch as st , (at,Qt, `t,Ht). The action space A
denotes the set of all feasible decisions xt that satisfies the
UAVs’ transmission constraints. The reward R assigns each
state-action pair an immediate value, defined as follows:

vt(st,xt) =
∑
t∈T

U(Φt, `t, tt). (16)



The PPO algorithm, introduced in [10], offers a balance
between learning efficiency, simplicity, and sample efficiency,
making it a suitable choice for policy-based policy gradient
tasks. We implement the PPO algorithm to adapt the UAVs’
sensing scheduling and transmission control in the outer-loop
learning, as listed in Algorithm 1.

At the initialization stage, we randomly initialize the deep
neutral network (DNN) weight parameters θ for the policy
network. In each learning episode, The BS collects observa-
tions st , (at,Qt, `t,Ht) of the system in the t-th decision
epoch, and then executes an action Φt from the DRL agent
according to the old policy network πθold , as shown in line
5 of Algorithm 1. Given the outer-loop decision Φt, the BS
needs to optimize the UAVs’ mobility control, as shown in
problem (17). This corresponds to lines 6 of Algorithm 1.
Then, we will execute the decision variables (Φt, `t, tt) and
the correspoding reward, as shown in lines 7 - 9 of Algorithm
1. The DNN training of the PPO algorithm is based on the
mini-batch from the experience replay buffer, as shown in
lines 12 - 13 of Algorithm 1.

D. Inner-loop Optimization for UAV’s Mobility Control

Given the UAVs’ sensing scheduling and transmission
control policies Φ, the optimization of (`, t) can be solved
by SCA method efficiently. The UAVs’ mobility control
includes the UAVs’ hovering positions and time allocation for
the UAVs’ sensing, and transmitting phases. For simplicity,
given the UAVs’ sensing scheduling and transmission con-
trol, we introduce ˆ̀

m,k = ‖`m − qk‖2 and slack variables
(ηm,k, φm,k, ϑm,0) to approximate the the UAVs’ mobility
control subproblem as follows:

min
`,t

∑
m∈M

∑
k∈K

βm,kQ̂m,kη
2
m,k −

∑
m∈M

QumD(ϑm,0) (17a)

s.t. log2

(
1+
ps|Γ0|2ρ2/σ2

φm,k

)
≤
η2
m,k

ts,m
, if Q̂m,k>0, (17b)

φm,k ≤ E(ˆ̀m,k), if Q̂m,k > 0 (17c)

η2
m,k/ts,m ≤ F (ˆ̀m,k), if Q̂m,k ≤ 0 (17d)

ϑ2
m,0/tr,m ≤ H(ˆ̀m,0)− Ĥ(ˆ̀m,0), (17e)

(1) and (2), (17f)

where Q̂m,k, D(ϑm,0), E(ˆ̀m,k), F (ˆ̀m,k) and Ĥ(ˆ̀m,0) are
linear approximations, detailed as follows:

Q̂m,k , Qm − (Zk + V )(ak + 1)/ck, (18a)

D(ϑm,0) ,
(
ϑ

(τ)
m,0

)2

+ 2ϑ
(τ)
m,0

(
ϑm,0 − ϑ(τ)

m,0

)
, (18b)

E(ˆ̀m,k),
(

ˆ̀(τ)

m,k

)2

+4ˆ̀(τ)

m,k

(
`(τ)
m −qk

)T(
`m−`(τ)

m

)
, (18c)

F (ˆ̀m,k), log2(1 + γ
(τ)
m,k)−

γ
(τ)
m,k

(
ˆ̀2

m,k−(ˆ̀
τ

m,k)2
)

(
ˆ̀(τ)

m,k

)4

(1 + γ
(τ)
m,k)

, (18d)

Ĥ(ˆ̀m,0) , log2

(
1 +

∑M

j=m
ςj,0

)
. (18e)

The above analysis reveals that the Lya-HPPO algorithm is
to solve the problem (10) following the overall framework in

Fig. 2. The purpose is to minimize the overall AoI by optimiz-
ing the UAVs’ sensing scheduling, transmission control, and
trajectory planning. First, the Lyapunov optimization is used
to decompose the problem. Then, once the UAVs’ sensing
scheduling and transmission control are determined by outer-
loop DRL, the UAVs’ trajectories and time allocation can be
optimized by solving problem (17). At the end of each time
slot, the UAVs’ data queues and the GUs’ AoI queues can be
updated according to (4) and (8).

IV. NUMERICAL RESULTS

In this section, we present simulation results to verify the
performance gain of the proposed Lya-HPPO framework. The
BS’s location in meters is given by (550, 200, 0). The GUs are
randomly distributed in a rectangular area with the dimension
of 500× 500 m in the (x, y)-plane with z = 10. The default
parameter settings are given as follows: vmax = 25m/s, dmin =
30m, ps = 27 dBm, and V = 100.

In Fig. 3(a), we reveals the convergence of the outer-loop
DRL in a time slot. We compare the reward performance of
the proposed Hierarchical-PPO with the Conventional-PPO
and the Heuristic-PPO algorithms in Fig. 3(a). All decision
variables (βm,k, αm, `m, tm) are adapted simultaneously in
the Conventional-PPO algorithm. In the Heuristic-PPO algo-
rithm, we employ a heuristic method to replace the sensing
scheduling βm,k learned in the Hierarchical-PPO algorithm.
The heuristic method is that each UAV is connected with its
closest GU. It is clear that the Conventional-PPO is unlikely
to converge effectively due to a huge action space in the
mixed discrete and continuous domain. The Hierarchical-PPO
algorithm can reduce the action space in the outer-loop PPO
framework and thus achieve a significantly higher reward
performance and faster convergence guided by the inner-loop
optimization. Compared with the Hierarchical-PPO algorithm,
the Heuristic-PPO algorithm significantly reduces the action
space by introducing a heuristic design for sensing scheduling
βm,k, which results in faster convergence. However, compared
to learning method, heuristic approach obtain a less accurate
sensing scheduling βm,k, which results in a lower reward.

Figure 3(b) further reveals the learning performance of the
Lya-HPPO framework in multiple time slots. At the beginning
of each time slot, given the outer-loop decision, another action
can be estimated by the inner-loop optimization. Then, the
UAVs and the GUs can execute the joint action and further
update their data buffers and AoIs. As such, the multi-slot
learning problem can be transformed into sequential learning
processes. The updated data buffers and AoIs are used as
the initial states in the next time slot. At the beginning of
each time slot, the reward firstly drops significantly due to
the change of the UAVs’ sensing scheduling and transmission
control. However, the reward quickly increases as the UAVs’
sensing scheduling and transmission control are adapted by
the Hierarchical-PPO algorithm. When finding a stable joint
action, each UAV will report their locations to the BS through
optimization method. We can observe that the reward can
be improved gradually at the end of each time slot, which
validates of the Lya-HPPO framework.
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Fig. 3: The Lya-HPPO framework improves reward performance and
learning efficiency.
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Fig. 4: (a) AoI dynamics with different scheduling schemes; (b)
Dynamics of UAVs’ data queue and GUs’ AoI.

Figure 4(a) depicts the GUs’ AoI dynamics in different
scheduling schemes. We devise a set of baseline schemes for
comparison, i.e., the round robin (RR) scheduling scheme and
the Random scheduling scheme. The RR scheduling scheme
means that the each UAV periodically selects one GU to
collect its status-update information. The Random scheduling
scheme allows the GUs to randomly access the uplink GU-
UAV channels for data uploading. It is observed that the Lya-
HPPO scheme can achieve the best real-time AoI and ensure
the smooth AoI change of each GU. As the GUs’ AoIs and
the UAVs’ data backlogs are taken into considerations in the
Lya-HPPO scheme, it will not yield high AoI fluctuation.

In Fig.4(b), we show the dynamics of the UAVs’ data
queues and the GUs’ virtual AoI queues of the Lya-HPPO
algorithm. It is observed that the data of UAVs increases
gradually and tends to be stabilized in the subsequent time
slots. The reason is that the amount of collected data is
relatively low due to the long distance between the UAVs
and the GUs at the beginning of the sensing period. In
the later time slots, the closer UAV-GU distances can bring
higher sensing and transmission rates, which is beneficial for
stabilizing the data queues. It is also observed that the virtual
AoI queues of GU-1 to GU-4 fluctuate in a smaller range
over different time slots, while the GU-5’s virtual AoI queue

quickly approaches zero. This is because the GU-5 is located
in a remote area, and the UAVs tend to serve it more frequent
after reaching it, which effectively reduces the GU-5’s AoI.
The above results confirm that the Lyapunov control helps
maintain queues stability, which is critical to achieve stable
and efficient system operation.

V. CONCLUSIONS

In this paper, we have investigated a NOMA-aided multi-
UAV-assisted wireless network for AoI minimization. We
have provided a novel Lyapunov-driven hierarchical PPO
(Lya-HPPO) framework to reduce the overall AoI. The Lya-
HPPO framework first decomposes the multi-stage problem
into several per-slot subproblems via Lyapunov optimization.
Then, we use hierarchical-PPO algorithm to solve each per-
slot subproblem, including the outer-loop learning and the
inner-loop optimization. The Lya-HPPO framework can keep
information fresh by flexibly optimizing the UAVs’ sensing
scheduling, transmission control, and trajectories, while main-
taining the queue stability. Numerical results have demon-
strated that the Lya-HPPO algorithm can efficiently achieve a
faster convergence and reduce the overall AoI.
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