
perMAC: Perturbation-based MAC for Dense
Wireless Networks with Periodic Traffic

Jing Deng
Dept. of CS

UNC Greensboro
Greensboro, NC 27412, U.S.A.

jing.deng@uncg.edu

Po-Ning Chen
Dept. of ECE

National Yang Ming Chiao Tung Univ.
R. O. C.

poningchen@nycu.edu.tw

Yunghsiang S. Han
Shenzhen Inst. for Advanced Study

Univ. of Electronic Sci. and Tech. of China
Shenzhen, P. R. China

yunghsiangh@gmail.com

Abstract— The abundance of wireless devices necessitates ef-
ficient contention resolution among competing users. With dif-
ferent approaches and channel reservation techniques in use,
the ultimate resolution approach still remains similar to pure
ALOHA or slotted ALOHA. It has been proven that no approach
could achieve a better throughput than pure ALOHA or slotted
ALOHA if users are randomly competing with each other. In
this work, we investigate an efficient mechanism to improve
contention resolution among competing users in dense wireless
networks with periodic traffic. Our approach is to use trans-
mission perturbation among competing users in order to avoid
repeated collisions down the road. Analysis and performance
evaluations show that our new design, Perturbation-based MAC
(perMAC), achieves a high throughput and is rather stable.

I. INTRODUCTION

We live in a networked world, even for those of us located
in rather remote areas. With the proliferation of wireless
devices competing for the limited wireless communication
resources, collisions tend to happen frequently, which lower
system throughput. Therefore, a carefully-designed technique
is needed to allow these users to access the shared channel.

The large number of wireless devices competing for the
same resource results in a waste of its time with all competing
users. With ever-more popular IoT devices, more and more
users are joining the competition. Even with the implementa-
tion of rather advanced techniques, these users’ competition
would still be capped by theoretical bounds of pure ALOHA
technique, or in the case of slotted operations, slotted ALOHA.
Essentially, when pure ALOHA is used, the best throughput
that can be achieved is 1/2e = 0.184 and for slotted ALOHA,
it is 1/e = 0.368.

The question remains open whether it is possible to some-
how improve the throughput of such systems. In this work,
we approach this problem from the angle of many realistic
applications, i.e., most devices are on periodic traffic [1] even
though these traffic flows are rather unpredictable. Many of the
data demanding 6G communications such as Virtual Reality
(VR), Augmented Reality (AR), massive connectivity such
as IoT networks connecting billions of machine-type devices,
ubiquitous wireless devices, could very well fall in this cat-
egory. That is to say, these users need to send data packets
periodically and they need to send these within a certain
delay bound (expired packets should be discarded because new

ones might have been generated already.) With such a large
number contending nodes, traditional MAC schemes might not
work, leading to the need for Next Generation Multiple Access
(NGMA) design.

In this work, we design a new approach, termed
Perturbation-based MAC (perMAC), to help improve the
throughput. Our approach is based on the following obser-
vations: when periodic traffic is concerned, they only need
a specific transmission time slot with as low competition as
possible. With the help from a novel approach of perturbing
the transmission schedules of these nodes, we should be able
to “spread” them quite well in each of the cycles. Note that this
simple approach can be used on top of most existing protocols
without major changes.

II. RELATED WORK

Periodic traffic in wireless networks is not unheard of. In
fact, many published works have investigated wireless net-
works [1]–[6]. Many of these achieved throughput better than
ALOHA or slotted ALOHA, though with various assumptions.

Cao et al. presented an analytical model and some ex-
tensions that accounted for heterogeneous traffic and hidden
nodes in [1]. Yuan et al. [2] focused on intelligent Wireless
Body Area Networks (WBAN) and its real-time and reliable
health data transmissions. A health critical index was de-
signed to prioritize different traffic flows’ transmissions. In [3],
Mennes et al. took advantage of neural networks to perform
online learning in the process of identifying free slots in
Multiple Frequency TDMA (MF-TDMA) networks. By doing
this, collisions could be reduced 15 times. Ahmed and Hussain
proposed a scheduling technique in IEEE 802.11ah network.
Their approach predicts the service interval of monitoring
applications and schedules subsequent frame transmissions
before they arrive, reducing delay and unnecessary early
wake-up (and thus energy consumption). In [5], Lusvarghi
and Merani studied cellular vehicle-to-everything (C-V2X)
communications mode 4, which could see the coexistence of
periodic traffic and aperiodic traffic. Yousefi et al. studied time
critical wireless sensor networks under periodic traffic with
reneging packets through a Markovian chain model [6].

MAC designs for dense wireless networks have also ap-
peared in technical literature [7], [8]. Narasimha et al. used



Mean Field Game (MFG) to analyze wireless networks in the
large population regime. Mean Field Nash equilibrium and
price of anarchy were investigated. Gao et al. [8] designed a
MAC scheme for a massive number of devices with sporadic
data traffic.

Frameless ALOHA design [9] and several subsequent ap-
plied paradigm of rateless codes in the design of MAC
schemes, allowing the frame length to be adjustable while
users adjust their transmission probabilities. The approach
achieved a throughput significantly higher than slotted
ALOHA for non-periodic setting.

The approach we are presenting in this work is also related
to several machine learning approaches [10]–[13]. Ali et
al. [11] used deep reinforcement learning to optimize through-
put for observation-based MAC scheme in Wireless LAN
(WLAN). Zhang et al. [12] used coordinated descent federated
learning on the selection of simultaneous transmission over k
sub-carriers in order to achieve higher reception success at the
common receiver in the many-to-one communication setting.
Cordeschi et al. [13] proposed a Delay-Collision CSMA (DC-
CSMA) scheme in order to reduce user access latency and to
preserve high success ratio at the same time.

Compared to these related works, our approach is to focus
on the shared channel with a large number of active users with
periodic traffic. We try to spread their periodic transmissions
over the transmission period in order to improve overall system
performance. Using this approach, we are able to achieve
throughput that is more than double of slotted ALOHA.

III. SYSTEM MODEL AND DESIGN

A. System Model

In the system that we study, we assume there are N
users with traffic to send to a centralized receiver, unless
specified otherwise. These users use slotted communication,
i.e., transmissions are all synchronized with the start time of
each slot. We call each slot a unit time. The transmission delay
is assumed to be negligible, although further investigations
of non-negligible transmission delays would be interesting
and can serve as direction for future work. Each user is
able to observe its own transmissions’ success, either through
off-channel broadcast from the centralized receiver or by a
short acknowledgment message. Furthermore, users are able
to estimate the number of users N in the network [14].

User traffic is not pure random. Instead, all users have the
same delay/arriving period D but they could start at different
times/offsets. We investigate dynamic traffic in the perfor-
mance evaluation section and leave different traffic patterns
to our future work.

B. Discussions and Design

In our pursuit of possible throughput higher than the well-
known bound of slotted ALOHA’s 1/e, we notice that the
delay-constrained traffic pattern among all competing video
streams and the synchronized frame assumption has been made
for the convenience of analysis. We also hope to understand the

performance of ALOHA-type protocols for such non-frame-
synchronized traffic pattern.

In this subsection, we consider a randomly-offset version
of the frame-synchronized traffic pattern: all stations have
the same delay/arriving period D but could start at different
times/offsets, denoted as

Γ = (Γ1,Γ2, · · · ,ΓN ), (1)

where any Γi is a uniform random variable in the range of
{1, 2, · · · , D} and all Γi’s are i.i.d. The first packet of flow
k arrives at the beginning of slot Γk. Clearly, our frame-
synchronized traffic pattern is a special case of non-frame-
synchronized traffic pattern, with

Γ = (Γ1,Γ2, · · · ,ΓN ) = (1, 1, · · · , 1). (2)

First, it is straightforward to show that earliest-deadline-
first (EDF) [15], maximizes the system throughput for such
delay-constrained traffic, but EDF requires a central controller.
Therefore, we aim to design ALOHA-type decentralized pro-
tocol. To do this, we try to approximate the EDF scheduling
policy in a decentralized manner. In decentralized techniques,
nodes are unlikely to know what other nodes’ packet deadlines.

A careful observation on the competing streams is thus
needed: in realistic applications, shared streams start randomly.
For the benefit of easy presentation, we assume that the data
packets in different streams have the same delay constraints,
i.e., they expire in the same amount of time, modeled as D
here. However, due to the randomness of each stream’s start
times, clusters of start times are bound to take place. In fact,
the chance of an evenly distributed start time can be computed
as [16]

p0(D,N) =

D!
(D−N)!

DN
, (3)

where the numerator in (3) represents the number of different
arrangements of all N nodes’ start times with no collisions
and the denominator in (3) is the total number of different
arrangements of all N nodes’ possible start times. As an
example, when D=100 and N=40, p0(D,N) = 0.01%.

However, it is more likely that these start times are rather
spread out relatively evenly. Using the same (D, N) set values
of (100, 40), we show one set of randomly generated start
times on Table I. Those start times overlapping with other
users are underlined and shown in red. Altogether, 13 (marked
in red) out of the N=40 users have such overlaps and they
reside on 6 spots. It means, the rest of 27 users should be
able to send at their deadline spot without any collisions. The
issue is how to resolve the ones with collisions. A distributive
strategy is “perturbation,” [17], [18] discussed below.

Denote ℓi as the number of slots when user i’s packet (if
any) expires. Clearly, ℓi ∈ {1, 2, · · · , D}. We would simply
call ℓi the lead time of station i [19]. The relationship between
ℓi and Γi at time slot t can be expressed as

ℓi = mod (Γi − t,D) . (4)

EDF schedules the station i∗ with the minimal expiration



TABLE I
EXAMPLE OF RANDOM START TIMES FOR (D,N)=(100,40)

9 10 15 16 16 17 19 21 22 25 25 25 26 26 35 36 39 41 44 47
48 55 59 59 60 62 62 63 63 64 66 72 77 80 84 87 88 89 90 95

time, i.e.,
i∗ = argmin

j
lj (5)

and breaks ties arbitrarily. Instead, we try to design a dis-
tributed ALOHA scheme where each station only knows D,
N , its packet’s lead time, among other observable information.

One design is to favor those data packets with short lead
times by setting their transmission probabilities arbitrarily
high:

p(ℓi) =

{
min{ α

m , 1}, if ℓi ≤ m;
min{D/N−α

D−m , 1}, otherwise,
(6)

where p(ℓi) is the retransmission probability when the leading
time is ℓi = 1, 2, · · · , D for user i, m ∈ {1, 2, · · ·N} and
α > 0, although m is expected to be an integer close to 1
and α should not be larger than 1 (this was explained in [14]
and [20] in details).

Unfortunately, transmission policy (6) usually fails to de-
liver high throughput because of the higher chances of having
deadline (or lead time) collisions, i.e., nodes with packets
that are set to expire in the same time slot. Such packets
have been set by the transmission policy to have much higher
transmission probability and they will collide with each other
repeatedly.

In order to reduce the chance of lead time collisions, we
design a technique called Perturbation-based MAC (perMAC)
to address the problem. The design came from an observation
is that, after transmission policy (6) is employed for some
time, each node is able to find out how much throughput has
gone through from itself over the competing wireless channel.
This can be used to guess whether repeated collisions have
been taking place or not.

In perMAC, in every T ≫ D time slots, each node
compares its throughput Si (the total number of successfully
transmitted packets divided by time) with θ/N , where 0 < θ <
1 is the triggering threshold. Those nodes suffering with low
throughput share will adjust their lead times within the range
of ±R time slots as a measure to avoid repeated collisions.
The algorithm is described in Algorithm 1, which is executed
every T unit times by the nodes.

The reason for this design is that users colliding frequently
should be switched or perturbed to other spots for better
results. By allowing these users to make small shifts gradually,
i.e., perturbations, the perMAC scheme eventually spread these
competing users into the entire period of D, resulting in higher
throughput. Note that Algorithm 1 requires user’s knowledge
of N , which can be estimated [14]. We further investigate the
impact of inaccurate N estimate on perMAC’s performance in
Section V.

Algorithm 1 perMAC Lead Time Adjustment Algorithm
Require: Si, N , ℓi, i = 1, 2, · · · , N
Ensure: New lead time ℓ′i, i = 1, 2, · · · , N

1: for all i ∈ {1, 2, · · · , N} do
2: if Si < θ/N then
3: ℓ′i = [ℓi + ⌊2R ∗ rand()⌋ −R] mod D
4: else
5: ℓ′i = ℓi
6: end if
7: end for

IV. ANALYSIS

We use Poisson arrival to estimate the throughput of the
perMAC scheme in this section. For simplicity, here we
assume that users’ choices of different time slot follow Poisson
distribution. At the very beginning, there are N users that
will randomly pick one of the D time slots. Only those
users picking a time slot by themselves will be successful.
Other colliding users will perform permutation and hope to
be successful later.

The expected number of successful picks among all N users
is

ηi=1 = D · Pr(one arrival) = D
N

D
e−N/D = Ne−N/D (7)

which calculates the chance of success in each of the D time
slots in the first round (before any perturbation, i = 1). The
Poisson arrival rate is estimated as N/D.

Any subsequent round of perturbation will require those
users that have perturbed but still haven’t identified a success
time slot to continue their perturbations. The expected number
of success among these users is

ηk = (D−
k−1∑
i=1

ηi)·Pr(one arrival) = (N−
k−1∑
i=1

ηi)e

(N−
∑k−1

i=1
ηi)

(D−
∑k−1

i=1
ηi)

(8)
in which we have removed those successful users in all
previous rounds, a total number,

∑k−1
i=1 ηi, of them. These are

users with a single time slot to themselves. Note that, even
though occasionally some other new users would perturb and
join these time slots, they would move away noticing the new
collisions while the previously successful users would stay.

For K rounds, we count throughput as the sum of all
successful time slot selections: S =

∑K
k=1 ηk. We compare

our analysis with simulation results in Section V.

V. PERFORMANCE EVALUATION

Extensive simulations have been performed to analyze the
throughput of perMAC. In our study, we focus on throughput,



0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

D/N, 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
h
ro

u
g
h
p
u
t,
 S

=0.3, N=1,000

=0.6, N=1,000

=0.3, N=600

=0.6, N=600

=0.3, N=200

=0.6, N=200

N=1,000 analysis

Fig. 1. Throughput of perMAC with different δ, θ, and N .

number of colliding users, energy consumption (in terms
of attempted transmissions), packet drop rate, and standard
deviation of throughput among all active users (for fairness
investigation). All simulations were implemented in MATLAB
and run for 20 rounds with average calculated from these
results. Simulation time was 1,000,000 units, observation
period T = 10, 000, R = ⌊0.1×D⌋, and α = m = 1, unless
specified otherwise.

First, we investigated the impact of δ = D/N and θ
on the throughput performance of the perMAC scheme. In
Figure 1, we used two different θ values and a wide range
of δ. We chose a few N values, 200, 600, and 1,000 in our
evaluation. Obviously other N values can be used and the
conclusions should be similarly. It can be seen that θ should be
relatively small for perMAC to function well. This is because
of the adverse impact of a large θ and the over-aggressive
perturbation of user’s lead time (note that users with a recent
throughput smaller than the θ/N threshold would perform the
perturbation of their lead times. With respect to δ, perMAC
performance improves generally with the increase of δ until
reaching its peak and then it will level off. When δ is too small,
e.g., δ < 1 meaning D < N , there is not enough spots for all
the competing users. However, when δ is increased beyond 1,
more spots are eventually wasted as the number of active user
is now smaller than the number of available spots.

Analysis results are also presented in Figure 1 as the solid
dark line (with K = 20). While our simple analysis failed
to match the throughput trend for smaller δ, it did highlight
the throughput close to 0.9 without considering θ and match
simulation throughput for larger δ well.

In order to illustrate this point further, we have shown
throughput for different m values (1 and 2) with a range of α
as the high transmission probability and different θ in Figure 2.
It can be observed that, when m = 2, throughput change is
almost negligible when we change θ from 0.3 to 0.6. However,
whenever m = 1, a significant throughput drop could be seen
when θ is changed from 0.3 to 0.6.

0.75 0.8 0.85 0.9 0.95 1 1.05

High transmission probability, 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
h
ro

u
g
h
p
u
t,
 S

m=1, =0.3

m=1, =0.6

m=2, =0.3

m=2, =0.6

Fig. 2. Throughput for perMAC with different α, high transmission
probability (N = 1, 000.)

TABLE II
DROPPED RATIO OF THE PERMAC SCHEME

δ=0.85 δ=0.95 δ=1.05 δ=1.15 δ=1.35
N=1,000 0.4491 0.2308 0.0535 0.0103 0.0082

N=400 0.4480 0.2271 0.0415 0.0064 0.0047
N=200 0.4432 0.2237 0.0055 0 0.0019

Conversely related to the throughput is the ratio of dropped
packets (among all generated packets), Pd = 1

δ − S. Results
are shown on Table II. We can see that the dropped ratio
decreases as δ increases towards 1 and then it will increase
slightly, suggesting that operating δ at slightly large values
would not hurt dropped ratio. When δ is about 1.05 or 1.15,
less than 5% packets were dropped in the perMAC scheme.

Users should have their fair share of channel usage. We
showed the standard deviation of throughput among different
nodes on Table III. These were computed based on each
user’s overall throughput over the entire simulation time. The
observed values are very small and they tend to decrease with
N (more evenly distributed among large number of nodes) and
δ (more spread out and easier to transmit packets successfully).

We were also interested in perMAC’s performance when
the number of nodes with actual traffic changed over time.
These results are shown in Figure 3. During the first third
of the 300,000 total simulation time, i.e., first 100,000 time
slots, half of the N nodes in the network generated packets
for transmissions. During the second third, i.e., from 100,000

TABLE III
STANDARD DEVIATION OF THROUGHPUT AMONG ALL USERS (×10−3)

δ=0.85 δ=0.95 δ=1.05 δ=1.15 δ=1.35
N=1,000 0.0812 0.0667 0.0336 0.0103 0.0082

N=400 0.1058 0.0875 0.0386 0.0105 0.0079
N=200 0.1935 0.1581 0.0224 0.0111 0.0093



0 0.5 1 1.5 2 2.5 3

Time, t (x1E5 units of time slots)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
h

ro
u

g
h

p
u

t,
 S

N=1,000

N=900

N=800

N=700

Fig. 3. Performance of the perMAC scheme with dynamic number of nodes
with traffic. D = 1, 000 in these simulations.

to 200,000, all N nodes would generate packets for transmis-
sions. And during the last third time, i.e., after 200,000 until
the end of the simulation, only half of the N nodes would
generate packets for transmissions again. We used this simple
dynamics in traffic load to evaluate the performance of the
perMAC scheme. Note that this is the only graph that shows
results with some nodes in the network having no packets
to send. Also note that D was set to 1,000 in all of these
simulations (this is different to other simulations) and the same
N , i.e., 1,000, 900, 800, and 700, were used throughout the
simulation even though some nodes would not have any traffic
over a period of time.

Our first observation is that, when half of the N nodes
had traffic, all generated packets were transmitted successfully,
with overall throughput of 0.5, 0.45, 0.4, and 0.35 for N =
1, 000, 900, 800, and 700 (note that D = 1, 000). More
interesting is the increase of perMAC’s throughput during the
middle third of the simulation time. For N = 800 and 700,
the throughput would increase to 0.8 and 0.7 quickly and stays
there until traffic load drops. For larger N (1,000 and 900, i.e.,
closer to D), this increase is rather slow. In fact, the throughput
could never reach 1 when N = 1, 000 (it reaches about 0.94).
When N = 900, throughput reaches 0.9 safely. These results
show that the perMAC scheme reacts to the different traffic
load and provides support for user traffic as needed.

VI. CONCLUDING REMARKS

In this work, we have focused on the MAC design issues
for densely populated wireless networks where data traffic are
unpredictable although periodic by each active user. Taking
advantage of the periodic traffic, we have designed a new MAC
scheme, termed Perturbation MAC (perMAC), to improve
throughput beyond slotted ALOHA, on which our scheme
operates. Our extensive simulation results show how and why
perMAC is able to offer its superior performance compared to
other techniques.

REFERENCES

[1] X. Cao, J. Chen, Y. Cheng, X. S. Shen, and Y. Sun, “An analytical
mac model for ieee 802.15.4 enabled wireless networks with periodic
traffic,” IEEE Transactions on Wireless Communications, vol. 14, no. 10,
pp. 5261–5273, 2015.

[2] X. Yuan, C. Li, Q. Ye, K. Zhang, N. Cheng, N. Zhang, and X. Shen,
“Performance analysis of ieee 802.15.6-based coexisting mobile wbans
with prioritized traffic and dynamic interference,” IEEE Transactions on
Wireless Communications, vol. 17, no. 8, pp. 5637–5652, 2018.

[3] R. Mennes, M. Camelo, M. Claeys, and S. Latré, “A neural-network-
based mf-tdma mac scheduler for collaborative wireless networks,”
in 2018 IEEE Wireless Communications and Networking Conference
(WCNC), 2018, pp. 1–6.

[4] N. Ahmed and M. I. Hussain, “Periodic traffic scheduling for ieee
802.11ah networks,” IEEE Communications Letters, vol. 24, no. 7, pp.
1510–1513, 2020.

[5] L. Lusvarghi and M. L. Merani, “On the coexistence of aperiodic and
periodic traffic in cellular vehicle-to-everything,” IEEE Access, vol. 8,
pp. 207 076–207 088, 2020.

[6] H. H. N. Yousefi, Y. Kavian, and A. Mahmoudi, “A markov chain
model for ieee 802.15.4 in time critical wireless sensor networks under
periodic traffic with reneging packets,” Journal of Ambient Intelligence
and Humanized Computing, vol. 13, pp. 2253–2268, 2022.

[7] D. Narasimha, S. Shakkottai, and L. Ying, “A mean field game analysis
of distributed mac in ultra-dense multichannel wireless networks,”
IEEE/ACM Transactions on Networking, vol. 28, no. 5, pp. 1939–1952,
2020.

[8] J. Gao, W. Zhuang, M. Li, X. Shen, and X. Li, “Mac for machine-type
communications in industrial iot—part i: Protocol design and analysis,”
IEEE Internet of Things Journal, vol. 8, no. 12, pp. 9945–9957, 2021.

[9] C. Stefanovic, P. Popovski, and D. Vukobratovic, “Frameless aloha
protocol for wireless networks,” IEEE Communications Letters, vol. 16,
no. 12, pp. 2087–2090, 2012.

[10] Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao, “Application of
machine learning in wireless networks: Key techniques and open issues,”
IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3072–
3108, 2019.

[11] R. Ali, N. Shahin, Y. B. Zikria, B.-S. Kim, and S. W. Kim, “Deep re-
inforcement learning paradigm for performance optimization of channel
observation–based mac protocols in dense wlans,” IEEE Access, vol. 7,
pp. 3500–3511, 2019.

[12] J. Zhang, N. Li, and M. Dedeoglu, “Federated learning over wireless
networks: A band-limited coordinated descent approach,” in IEEE IN-
FOCOM 2021 - IEEE Conference on Computer Communications, 2021,
pp. 1–10.

[13] N. Cordeschi, F. De Rango, and M. Tropea, “Exploiting an optimal
delay-collision tradeoff in csma-based high-dense wireless systems,”
IEEE/ACM Transactions on Networking, vol. 29, no. 5, pp. 2353–2366,
2021.

[14] G. Bianchi, “Performance analysis of the ieee 802.11 distributed coor-
dination function,” IEEE Journal on Selected Areas in Communications,
vol. 18, no. 3, pp. 535–547, 2000.

[15] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM, vol. 20,
no. 1, pp. 46–61, 1973.

[16] K. Cohen, A. Nedic, and R. Srikant, “Distributed learning algorithms
for spectrum sharing in spatial random access wireless networks,” IEEE
Transactions on Automatic Control, vol. 62, no. 6, pp. 2854–2869, June
2017.

[17] M. Bahraini, M. Zanon, A. Colombo, and P. Falcone, “Optimal control
design for perturbed constrained networked control systems,” IEEE
Control Systems Letters, vol. 5, no. 2, pp. 553–558, 2021.

[18] F. Kserawi, S. Al-Marri, and Q. Malluhi, “Privacy-preserving fog
aggregation of smart grid data using dynamic differentially-private data
perturbation,” IEEE Access, vol. 10, pp. 43 159–43 174, 2022.

[19] L. Deng, C.-C. Wang, M. Chen, and S. Zhao, “Timely wireless flows
with general traffic patterns: Capacity region and scheduling algorithms,”
IEEE/ACM Transactions on Networking, vol. 25, no. 6, pp. 3473–3486,
2017.

[20] Z. J. Haas and J. Deng, “On optimizing the backoff interval for random
access schemes,” IEEE Trans. on Communications, vol. 51, no. 12, pp.
2081–2090, December 2003.


