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Abstract—Vehicular Content Centric Networks (VCCNs)
emerge as a strong candidate to be deployed in information-
rich applications of vehicular communications. Due to vehicles’
mobility, it becomes rather inefficient to establish end-to-end
connections in VCCNs. Consequently, content packets are usually
sent back to the requesting node via different paths in VCCNs. To
improve network performance of VCCNs, node mobility should
be exploited for vehicles to serve as relays and to carry data for
delivery. In this work, we propose a scheme called Cooperative
Caching based on Mobility Prediction (CCMP) for VCCNs. The
main idea of CCMP is to cache popular contents at a set of mobile
nodes that may visit the same hot spot areas repeatedly. In our
CCMP scheme, we use Prediction based on Partial Matching
(PPM) to predict mobile nodes’ probability of reaching different
hot spot regions based on their past trajectories. Vehicles with
longer sojourn time in a hot region can provide more services
and should be preferred as caching nodes. To solve the problem
of limited buffer at each node, we design a cache replacement
based on content popularity to guarantee only popular contents
are cached. We evaluate CCMP through the ONE simulator
for its salient features in success ratio and content access delay
compared to other state-of-the-art schemes.

Index Terms—Cooperative Caching; Mobility Prediction;
VCCN

I. INTRODUCTION

Vehicular Ad-hoc Networks (VANETs), a special type of
mobile ad hoc network and preferred for intelligent trans-
portation systems, usually contain regular users and road
side units (RSUs). Regardless of safety-related or non-safety-
related applications, vehicle nodes in VANETs usually depend
on unique IDs to locate destinations and to establish/maintain
end-to-end communications. However, node mobility makes
it difficult to maintain the ongoing communication paths [1].
Interestingly, most communications are focused on contents
but their actual carriers, giving rise to the so-called Vehicular
Content Centric Networks (VCCNs) [2]. In comparison to reg-
ular networks, VCCNs allow nodes to communicate directly
prior to the knowledge of any identification or IP address and
asynchronous data exchanges are supported [2][3].

In VCCNs, a request/reply communication model is usually
adopted. Contents are stored at the source as well as at
a few other nodes. A requesting node broadcasts an In-
terest message for the content. The Interest message will
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be forwarded through the network toward the source node.
The delivery of such messages is usually based on node
mobility, i.e., nodes only forward messages toward other
direct neighbors. However, if the requested content is found
at an intermediate node, it will deliver the content to the
requesting node instead of forwarding the Interest message
further. With in-network caching, access latency and query
overhead can be improved [4]. Depending on whether the
content routers cooperate with each other, caching mechanisms
can be classified into cooperative caching and non-cooperative
caching [5]. In non-cooperative caching, content routers make
their caching decisions independently, which may lead to prob-
lems of frequent cache updates, over-caching, etc. Cooperative
caching benefits from the cooperation among caching nodes
with higher hit ratio and lower access delay.

However, cooperative caching techniques for regular
CCNs [6][7] cannot be directly employed in VCCNs because
of the huge diversity in mobility patterns for different nodes.
The lack of persistent network connectivity in VCCNs makes
it difficult to establish end-to-end connections, or even to use
the reversed path to deliver the requested content (see Fig. 1).
Furthermore, while it may seem attractive to cache all contents,
such a universal caching strategy can be too costly [8].

Fig. 1. VCCN network model

In this work, we propose a caching scheme called Co-
operative Caching based on Mobility Patterns (CCMP) for
VCCNs. The novel idea of CCMP is to take advantage of
essential hot regions, where a set of caching nodes are likely
to visit repeatedly and possibly stay for a long period of
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time. In fact, vehicles’ trajectory often exhibits a high degree
of repetition as a result of regular visits of certain places.
These can be linked as the core or backbone of opportunistic
content delivery. Our CCMP scheme takes advantage of such
a repetition of visits to prioritize content caching. We adopt a
technique call Prediction based on Partial Matching (PPM) to
predict one vehicle’s future trajectory based on the past traces.
Nodes with higher chances of staying in hot regions and with
longer sojourn times are chosen to cache contents. The main
contributions of our paper are listed as follows:

(1) CCMP partitions urban areas into different hot regions
based on users’ mobility patterns and such regions can
be adjusted based on dynamic vehicle density;

(2) PPM is adopted to predict the probabilities of different
nodes’ re-visiting different hot regions;

(3) We further propose a utility-based cache replacement
technique that evaluates query history and content pop-
ularity, so that only popular contents are cached on those
nodes visiting hot regions frequently;

(4) CCMP is compared to four other state-of-the-art caching
techniques through extensive simulations and shown to
be superior in success ratio and access delay.

The rest of this paper is organized as follows. Section II
reviews related work. In Section III, network model, prob-
lem statement, and PPM are introduced. The details of our
proposed CCMP scheme are presented in Section IV. We
evaluate CCMP and compare it with other schemes in Section
V. Finally, we conclude our work in Section VI.

II. RELATED WORK

In this section, we discuss works that are related to our
approach.

CCNs- Most of the existing caching schemes in CCNs
can be classified into advertisement-based ones and non-
advertisement-based ones depending on whether the cache
state is advertised to other content routers [5]. Both categories
belong to heterogeneous caching schemes, in which routers
cache different contents due to different cache sizes and
observation history [6].

Advertisement-based approaches aim to reduce access de-
lay by advertising the cache state, with examples such
as [9][10][11][12]. In [9], an inter-domain cooperative caching
mechanism was proposed. A main content router, similar to the
border area router, collects cache states of routers in its domain
and then advertises them to its peer domains. CATT [10], an
intra-domain cooperation scheme, requires a content router to
advertise the availability information of the content to its k-
hop neighbors. In [11][12], there exists a centralized manager
that takes charge of maintaining the cache state of the network.

In non-advertisement-based approaches, content routers do
not rely on any additional advertisement mechanism to deliver
their cache states. ProbCache [7], a probabilistic caching
mechanism, was first proposed to approximate the capability
of caching routers and then only popular contents are cached.
In this scheme, contents are divided into small chunks for
storage in different nodes in order to improve efficiency.
WAVE [13] uses content popularity from the suggestion of

upstream routers to decide downstream routers’ chunk selec-
tion. In [14][15], each content router is associated with a label
and only caches chunks whose number is equal to its label.

Caching in Mobile Networks- In recent years, caching for
mobile networks has also been studied. Psephos [16] addressed
caching with heterogeneity with a fully distributed technique,
in which only items receiving the highest votes are stored in
content routers. In [17][18], social attributes such as contact
patterns and relationships are used to choose caching nodes.
In [4][19][20], those nodes located at key positions are chosen
as caching nodes to balance between data accessibility and
caching overhead. Opportunistic approaches have also been
proposed and investigated [21][22].

For instance, in [4], the Network Central Location Coop-
erative Caching (NCLCC) scheme identifies several NCLs
to cache contents. These locations are expected to have a
high chance of promptly replying users’ queries and their
selections are based on a probabilistic metric evaluating data
transmission delay among nodes in the network. In Distributed
Probabilistic Caching strategy [20], caching decisions are
made by each node independently and three factions are
considered: users’ demands mined from the collected Interests,
relative movement of the receiver and the sender, and the
importance of vehicles based on the degree and betweenness
centrality in the ego network which is composed of the current
node and its one-hop neighbor with the current node as the
center of the network. The Proper Node Cooperative Caching
(PNCC) scheme [22] is essentially a greedy algorithm for
choosing proper cache nodes, considering the contacts between
pairwise nodes and the query situation for different data items.
In Location Dependent Cooperative Caching (LDCC) [23], a
state prediction model is applied to estimate the movement
behavior of clients. The probability of the mobile client staying
in a specific valid scope for any given time is then derived.
Then, clients with higher probability will be chosen as caching
nodes within a short period of time.

Furthermore, there are some other works by exploiting the
public transportation to improve the network performance.
In [24], Mobile Infrastructure Based VANET (MI-VANET)
was proposed to make buses constitute a mobile backbone
for data delivery and the ordinary cars run as the second
tier (similar to a tiered-system in [25]). MI-VANET can
improve both the network connectivity and the delivery ratio
of packets. In [26], the bus-assisted transmission protocol was
proposed by benefiting from the predictability and regularity
of buses. To improve the reliability of transmitting packets
in the VANET, packets are transmitted by switching between
common vehicles and buses. In [27], an efficient service
circulation and discovery scheme was proposed with the
aid of public transportation systems. A virtual backbone is
established by the buses that have the fixed route or routine
bus ride in public transportation systems so that the required
data can be effectively disseminated and discovered through
the backbone. Wang et al. took advantage of buses fixed routes
and predictable traces to alleviate the limited coverage issues
of RSUs in [28]. Instead, we focus on the problem of the
cooperation among regular users, private vehicles, and taxi,
in addition to buses to cache popular contents for efficient
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delivery.
Summary- Though there have been some works taking

advantage of mobile nodes to cache contents, none has taken
a full advantage of trajectory records and prediction toward
future trips. Instead, a successful caching scheme should solve
two problems cohesively: the selection of caching nodes and
the selection of caching contents. Our approach uses PPM
to process past travel patterns in order to predict future trips
before it selects the best caching nodes for the chosen cache
contents.

III. NETWORK MODEL AND PROBLEM STATEMENT

In this section, we firstly describe our network model, then
propose our problem statement.

We consider VCCNs consisting of a set of users and RSUs
as shown in Fig. 1. Each user can communicate with other
users or RSUs within wireless communication range. For
vehicle-to-vehicle communication, each vehicle communicates
and shares the messages with other vehicles over one-hop
neighbors within its communication range. As most VANETs,
RSUs are deployed throughout the network to relay messages
as well as to facilitate Internet connections. We further assume
that every vehicle is equipped with a GPS receiver for the
location service.

Different from the push-based communication model in
traditional VANETs, VCCNs usually take the pull-based ap-
proach. Interests are sent by users toward their direct neigh-
bors. Such Interests are stored, carried, and forwarded until a
Time-To-Live (TTL) timer expires or they reach the requested
item cached at a node, which then uses similar mechanism
to return the content. As contents are delivered inside the
network, the intermediate nodes make their own decisions on
whether to cache them or not based on a caching scheme
(such as CCMP proposed in this work). Consequently, a given
content may be available at multiple providers instead of being
stored exclusively at a specific node (e.g. data producer) in
VCCNs. All cooperative techniques in communication net-
works such as ad hoc networks depend on users willingness to
help others in order to receive help. Unwillingness to help or
misbehavior among different users can be interesting research
topics but we believe they are out of the scope of this work.

The data flow model is as follows: Initially, after contents
are produced, they are transmitted to the closest RSUs which
broadcast them to other RSUs. As the contents are queried and
delivered by regular users, they are cached by some vehicles.
Our algorithm focuses on choosing nodes and contents to
cache.

Due to limited buffer storage, it is obviously inefficient to
cache all contents on all vehicles. Instead, only those nodes
that are more likely to help others with contents should serve
as the caching nodes. Furthermore, only popular contents, with
a large number of requests, should be cached; less popular
contents should be replaced by popular ones. With the dynamic
feature of VCCNs, the selection of caching nodes and caching
contents can intriguing. Therefore, we have the following
problem statement:

Problem Statement (Selection of Caching Nodes and
Caching Contents in VCCNs):

In VCCNs, the goal is to allow contents to be queried and
delivered efficiently among different users and RSUs. Different
nodes can be chosen to cache contents that are of interest
to users. How to choose these nodes to improve success
ratio as well as to reduce access delay of content requests?
Furthermore, after the caching nodes are selected, how to
choose different contents to cache so that they can be accessed
with the best efficiency?

IV. THE COOPERATIVE CACHING BASED ON MOBILITY
PREDICTION SCHEME

In this section, we present the details of the CCMP scheme.
First, we list frequently used notations in Table I.

Fig. 2. System model

TABLE I
FREQUENT NOTATIONS

Notation Description

L The trajectory point set of one node
`i The i-th trajectory point
(xi, yi) The location coordinate of the `i
R The region set
ri The i-th region
⇢(ri) The density of ri during the training phase
n(ri,�t) The number of trajectory points in ri during the period �t.
S(ri) The area size of region ri
� The density threshold for choosing hot regions
R The communication range of RSU
�r The radius increment for region expansion
⌧ The length of time slice
H The hot region set
hi The i-th hot region
P The probability of prediction
ST The sojourn time of vehicular node
 The requested content
⌘ The popularity of content  
⌘
(R)
 The popularity of content  maintained by RSU

RSU The Road Side Unit
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A. Overview

Our CCMP scheme aims to predict a vehicle’s probability of
reaching hot regions based on its past trajectories by adopting
PPM. A vehicle with longer sojourn time in a hot region is
expected to provide more services and should be preferred
as a caching node to cache popular data. The CCMP scheme
mainly contains three modules: hot region generation, caching
node selection, and cache replacement policy as illustrated in
Fig. 2. Hot region generation and caching node selection are
both completed in the training stage. The regions with the
higher density of trajectory points are regarded as hot regions
(i.e, they are most frequently visited in the network). Our hot
region generation includes three phases, partition, expansion,
and collapse. After hot regions are identified, we perform
caching node selection to choose the best nodes that have the
highest chance of visiting the hot regions and staying there
for a longer time. The probability of each node arriving at hot
regions is obtained by PPM prediction. An overview of how
CCMP works follows:

1) Nodes record and upload their trajectory records to
RSUs in the training phase as well as the actual op-
eration phase. Such records are synchronized among all
RSUs. After the training phase, those regions are chosen
as the hot regions with higher density of trajectory
points.

2) We use PPM to predict the future trajectory of each node
based on its past traces. Only those nodes with longer
sojourn time in any hot region will be chosen as the
cache nodes.

3) After receiving new contents, RSUs in hot regions push
them to caching nodes within the communication range.

4) Interests to contents are generated periodically and sent
to neighbors. Such Interests are stored, moved, and
forwarded as nodes move.

5) Upon receiving an Interest, a node searches its cache
looking for a hit. If so, the content is replied toward
the requesting node in a similar fashion. Otherwise, the
Interest will be forwarded to the neighbors and then
it will be stored, moved and forwarded until its TTL
expires.

6) As Interests and contents are stored, moved, and for-
warded in the network, intermediate nodes update their
data structure as shown in Table II. Table II(a) keeps a
record of contents. Table II(c) records information about
all of those contents that are not cached locally, such
as name, source ID, and expiration time. Interests are
stored in Table II(b) with content name, time of last
access, and popularity. RSUs do not cache contents, so
they only maintain Table II(a) and Table II(b).

B. Identifying Hot Regions

The entire network region can be divided into many different
functional regions such as residential areas, business districts,
educational areas, health centers, etc. Intuitively, the number of
visits implicitly reflects the popularity of a certain functional
region [29]. In other words, people’s mobility patterns imply

TABLE II
DATA STRUCTURES MAINTAINED AT EACH NODE

(a) Content Record

Notation Description

name content name
content cached content

(b) Interest Record

Notation Description

name content name
time time of the last request
popularity content popularity

(c) Access Record

Notation Description

name content name
source source ID
time expiration time

the visit intensity. In the CCMP, the hot regions are first
identified according to vehicles’ trajectory.

1) Terminologies:
Definition 1 (Mobility Trajectory): The mobility trajectory

of one vehicle can be denoted by a sequence of points L =
{`1, `2, ..., `i, ...}. Each trajectory point `i is composed by a
triple (xi, yi, ti), representing one vehicle locates at (xi, yi) at
time ti.

Definition 2 (Region Density): During the time interval
�t, the density of region ri is denoted as

⇢(ri) = n(ri,�t)/S(ri), (1)

where n(ri,�t) is the number of trajectory points of all
vehicles in ri during �t, and S(ri) is ri’s area.

Definition 3 (Hot Region): Region ri is an independent hot
region if and only if the following conditions are satisfied:

(1) ⇢(ri) � �.
(2) ri > R.
(3) Region ri does not overlap with any other hot regions.
2) Generating Hot Regions:
Algorithm 1 describes the function of generating hot re-

gions, with three sub-functions:
a. Partition: As shown in Fig. 3(a), the whole area is

initially divided into squares with the side length of 2R
on lines 2-6.

b. Expansion: On lines 9-19, every region whose center is
an RSU keeps increasing by the increment of �r until
density ⇢(ri) stops growing (see Fig. 3(b)).

c. Collapse: On lines 20-28, the pink region in Fig. 3(c)
whose density exceeds � will be chosen as a hot re-
gion. Fig. 3(c) also shows that any two overlapped hot
regions will collapse into a bigger one if they have any
intersection area.

C. Selecting Caching Nodes
In order to select caching nodes, we PPM to predict each

node’s probability of reaching hot regions. Before predicting a
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Algorithm 1 Hot Region Selection
Input: R
Output: H . H: the hot region set

1: H  � . Partition
2: for all ri 2 R do
3: r(ri) R
4: compute n(ri)
5: ⇢(ri) n(ri)/S(ri)
6: end for
7: for all ri 2 R do
8: ⇢ ⇢(ri)
9: while ⇢(ri) � ⇢ do . Expansion

10: ⇢ ⇢(ri)
11: R(ri) R(ri) +�r
12: . R(ri): the radius of region ri
13: n(ri) n(ri) +�n
14: . �n: the trajectory number in extended area
15: ⇢(ri) n(ri)/S(ri)
16: end while
17: if R(ri) > R then
18: R(ri) R(ri)��r
19: end if
20: if ⇢(rj) � � then . Collapse
21: for all rj 2 H do
22: if ri overlaps with rj then
23: ri  ri

S
rj

24: H  H � rj
25: end if
26: end for
27: H  H

S
ri

28: end if
29: end for

(a) Partition (b) Expansion

(c) Collapse

Fig. 3. An example of hot region selection

vehicle’s future trajectory, a trip sequence should be collected
periodically in our CCMP: each vehicle records its trajectory
point at each sample time. When a vehicle encounters an
RSU, it sends its trajectory record. In our simulation, the
initial trajectory of each vehicle is collected during the training
period.

1) Prediction by PPM:
PPM is one of the important techniques in variable order

Markov models extending from the well-known Markov chain
models. PPM has been demonstrated to outperform other
techniques in sequence predictions [30]. In [31], PPM has
also shown its advantages in the prediction of future location.
During the training stage, the time each vehicle arrives at
or leave places and its current location are recorded. The
experiments have proved that PPM can provide a higher
accuracy of predicting the user’s future location. Consequently,
we adopt PPM to predict a vehicle’s future location in the
CCMP.

In general, there is a learning phase in PPM to process
known sequences. The learning phase has two stages, trie
construction and escape mechanism.

Trie construction starts with a root node corresponding to
an empty sequence. The training sequence is then processed
one symbol at a time. Each node except the root in the trie
represents a symbol and a counter, denoted by (x,M(x)),
where M(x) represents the number of times that x appears
in all D-sized contexts. Each parsed element x and its D-
sized context s form a path in the trie, T . If the path has
not appeared before, it will be added into T . Otherwise, all
the counters along the path will be incremented. At last, the
number of times that every node appears along this path
constitutes M(sx).

An example is shown in Fig. 4, suppose a sequence L =
{`1, `2, `3, `1, `4, `1, `5, `1, `2, `3, `1} is trained to construct a
trie. The first symbol `1 and its 2-sized context `2, `3 form the
first path in T . Because L also contains subsequences `1, `4, `1
and `1, `5, `1, two other branches are added below `1. Other
subsequences starting with symbols `2, · · · , `5 are added in a
similar way. Overall, `1 appears 4 times as the leading symbol.

Fig. 4. Illustration of trie construction based on a sequence L =
{`1, `2, `3, `1, `4, `1, `5, `1, `2, `3, `1}.

The escape mechanism is then used to compute probability
Pk(⇠|s), denoting the probability that the characters do not
appear after context s of length k (k 6 D). The probability
that other characters do appear after s is then 1 � Pk(⇠|s).
Prediction on the chance of symbol x appearing after s can
be computed as:

P (x|s) =
(

PD(x|s) x 2
X

s

PD(⇠|s) · P (x|s0) otherwise
, (2)
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where
P

s is the set of characters appearing after context s
in the training sequence and s0 is the suffix of s [32]. For the
empty context ✏, P (x|✏) = 1/|

P
| holds, where

P
represents

the set of all the characters appearing in the training sequence.
For each sequence s and character x, let M(sx) represent the
number of times of sx appearing in the training sequence. We
can obtain the following equations,

Pk(⇠|s) =
|
P

s |
|
P

s |+
P

q2
P

s

M(sq)
(3)

and

Pk(x|s) =
M(sx)

|
P

s |+
P

q2
P

s

M(sq)
, (4)

where k = |s| holds. Then, we can compute probability P (x|s)
by applying Eq. (3) and Eq. (4) into Eq. (2). Then, Markov
chain will be used for prediction based on Eq. (2).

Given a segment of mobility trajectory `3`1 and the subse-
quent trajectory `5 in Fig. 4, we will compute the probability
P (`5|`3`1) with Eq. (2). In the case of no training set {`3`1`5},
P (`5|s) = P (⇠|s) ·P (`5|s0) holds, where s is `3`1. Since s0 is
the suffix of s and s0 is `1, we get P (`5|`3`1), the probability
of one vehicle’s arriving at `5 from Eq. (3) and Eq. (4).

P (⇠|`3`1) =
|
P
`3`1

|
|
P
`3`1

|+
P

q2
P

`3`1

M(`3`1q)
= 0.5,

P (`5|`1) =
M(`1`5)

|
P
`1
|+

P
q2

P
`1

M(`1q)
= 1/7,

P (`5|`3`1) = P (⇠|`3`1) · P (`5|`1) ⇡ 0.07.

Algorithm 2 lists the process of predicting the future
trajectory. Lines 2-6 list the learning phase of PPM. PPM
constructs a trie data structure from the extracted trip sequence.
Lines 8-16 list the escape mechanism of PPM to compute the
probability of arriving at one region.

Algorithm 2 comp prob Function
Input: T (vi), tk+1, hj

Output: P . P : probability of v’s reaching hot region h
1: P  0
2: `a  `k�1(tk�1), `b  `k(tk)
3: for all `n 2 h do . at time slice tk+1

4: Pn  0
5: if `a`b`n exists in T then
6: Pn  P (`n|`a`b) . applying Eq. (4)
7: else if `a`b exists in T and `b`n exists in T then
8: Pn  P (⇠|`a`b) ⇤ P (`n|`b) . applying Eq. (3)(4)
9: end if

10: P  P + Pn

11: end for

2) Caching nodes selection:
Considering that one vehicle with longer sojourn time in a

hot region is expected to be able to provide more services for
other vehicles, we use sojourn time to choose caching nodes.
The expected sojourn time STi of vehicle vi is computed
with STi =

P
hj2H Pj · tj , which is listed on lines 2-15

of Algorithm 3, where hj denotes the hot region, Pj is the
predicted probability of reaching hj , and tj represents the
sojourn time in hj . The vehicles are sorted in descending order
of the sojourn time. Only vehicles with longer sojourn times
are preferred to serve as caching nodes.

Algorithm 3 shows the procedure of selecting caching
nodes. The sojourn time of each vehicle is calculated on
lines 2-15, while line 6 the comp prob function as listed
in Algorithm 2 is called to compute the probability of each
vehicle reaching a specific region. And lines 16-19 show that
only vehicles with longer sojourn time will be chosen as
caching nodes.

Algorithm 3 Caching Node Selection
Input: V , L, H . V : the vehicle set
Output: C . C: the caching node set

1: C  �
2: for all vi 2 V do
3: STi  0
4: Pmax  0
5: T (vi) � . Trie Construction
6: for all tk in TrainingStage do
7: T (vi) T (vi)

S
L[vi][tk]

8: end for
9: T (vi) InitTrieTree(T (vi))

10: while tk+1 do . prediction
11: for all hj 2 H do
12: Pj  comp prob(T (vi), tk+1, hj)
13: . escape mechanism in Algorithm 2
14: if Pj > Pmax then
15: Pmax  Pj

16: rk  hj

17: end if
18: end for
19: . compute sojourn time
20: if k > 1 and rk�1 == hj then
21: . vi remains in the same region
22: STi  STi + Pj ⇤ ⌧
23: else
24: . vi moves to another region
25: STi  STi + Pj ⇤ (⌧/2)
26: end if
27: end while
28: end for
29: . select caching node
30: V  Sort(V )
31: for i = 0! ✓ ⇤ Size(V ) do . ✓: the caching node ratio
32: C  C

S
V [i]

33: end for
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D. Cache Replacement
Since caching storage can only fit some contents but not

all, we discuss cache selection and replacement in this sub-
section. Our cache replacement is generally based on content
popularity. Each node observes all the Interests and deliveries
passing through itself and records such information. For each
Interest/delivery, the source node’s ID, content name, and
request time are recorded. When a new Interest/delivery is
observed, a content popularity, ⌘ , is updated for each named
content:

⌘ ( ⌘ · e���t + � , (5)

where � is an exponential decay constant and � is the
popularity increase constant. When a node receives a request
for the content  , it will compute the time interval �t between
the current time and the last time of receiving the same request
on  . Popularity should decrease exponentially with time �t.
Hence, the popularity is defined as e���t. This equation
considers both frequency and freshness of the request.

RSU nodes have better chances to observe content Interests
and deliveries. Therefore, we design RSU nodes to maintain
a similar content Interest, ⌘(R)

 , which is updated among all
RSU nodes through Internet connections. Essentially, ⌘(R)

 is
updated in a similar fashion, but it has a different impact on
the vehicles:

When a vehicle travels close to a RSU node, it will retrieve
⌘
(R)
 from the RSU and update its own content popularity with:

⌘ ( ↵ · ⌘ + (1� ↵) · ⌘(R)
 , (6)

where ↵ is the weight ratio. Compared with each vehicle,
the RSU can have a more complete observation on different
Interests/deliveries. Consequently, we set 0 < ↵ < 0.5 to give
⌘
(R)
 a higher weight.

Algorithm 4 Cache Replacement Scheme
Input:  . content requested

1: vi receives a packet that contains content  
2: vi updates AR
3: if  exists in IR then
4: ⌘  ⌘ · e���t + �
5: else
6: ⌘  �
7: end if
8: if  is not in CR then
9: if CR is not full then

10: vi stores  in CR
11: else if CR is full and ⌘ > ⌘min

in CR then
12: vi removes the content with ⌘min from CR
13: vi sotres  in CR
14: end if
15: end if
16: if vi meets a RSU then
17: vi retrieves ⌘(R)

 from RSU
18: ⌘  ↵ · ⌘ + (1� ↵) · ⌘(R)

 
19: end if

V. PERFORMANCE EVALUATION

In order to evaluate the performance of our caching scheme,
we conducted our experiment based on the Opportunistic
Network Environment (ONE) simulator [33], which is spe-
cially implemented for opportunistic networks. In our design,
there are 300 nodes, including 30 RSUs and 270 users (50
people, 100 buses, and 120 taxis), distributed in the map. All
people follow Working-Day-Movement Model [34] with daily
routines which mainly consist of staying at home, working in
office, and shopping in markets, etc. In addition, we assume
that the chance for a person owning a car is pv , or s/he must
take the bus to reach different destinations. Buses follow a few
fixed driving routes throughout the map, and taxis drive as the
Random-waypoint Model. All the nodes are with the same
caching buffer size, movement speed range, and transmission
range and data rate. First of all, we collected the location
and communication records of vehicles in 5 working weeks
in the training stage and applied them to different caching
schemes for training. In our training stage, we start collecting
trajectory records after the first 36 hours. Then, we use the
three latest records that have just been collected and all of
the trajectory records collected through the training stage to
predict its trajectory. Next, in the actual evaluation, every
person periodically generated queries following the Zipf’s
law distribution [35], f(k; s,N) = 1/ks

PN
n=1(1/n

s)
, where k is

the rank of elements, s is the exponent parameter, N is the
number of elements (number of contents in our paper). We list
important simulation parameters in Table III.

TABLE III
SIMULATION PARAMETERS

Parameter description Value

Caching Buffer 1000MB
Query Interval [50minutes, 100minutes]
Message TTL 10 minutes
Network Area 10km*7.5km
Simulation Time 15weeks
Vehicle Speed [7m/s, 10m/s]
RSU Transmission Range 500m
Vehicle Transmission Range 50m
RSU Transmission Speed 10Mbps
Vehicle Transmission Speed 2Mbps
Vehicle ratio (pv) 0.4
Popularity Weight (↵) 0.3
Popularity Increment (�) 0.1
Exponential Decay (�) 0.0005

Specifically, caching node ratio is set to 0.4, content size is
set to 20MB unless specified otherwise.

A. Performance Metrics

Our main comparisons were made between the proposed
CCMP scheme, LDCC [23], NCLCC [4], PNCC [22] and
DPC [20]. Our CCMP scheme predicts a vehicle’s future
locations using PPM and selects caching nodes based on their
probability of arriving at the hot regions and their sojourn
time. We thus choose a prediction-based scheme LDCC as
a reference. LDCC prefers nodes with highest probability
staying in a valid scope. NCLCC is to intentionally cache data
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at a set of chosen Network Central Locations (NCLs), serving
as the best central locations to cache popular contents. PNCC
computes opportunistic path weight and centrality of nodes
as parts of caching node selection elements. PNCC considers
the rate of nodes querying data items to select the cache
nodes. In DPC, the caching decisions are taken by each node
separately and independently, which considers users’ demands
mined from collected interest entries, and the importance of
vehicles in the ego network.

Performance metrics are listed below:
• Success Ratio, the ratio of successful queries that gen-

erate requested contents among all queries.
• Average Access Delay, the average delay of obtaining

responses in successful queries.
• Standard Deviation of Storage Usage �, the standard

deviation of storage usage among all nodes in the net-
work.

• Average Storage Usage, �B , �T , �C , �O, the average
storage usage of different nodes: Bus, Taxi, users with
Cars, and users withOut cars, respectively, in the network.

B. Performance Comparison
In Fig. 5, we compare success ratio, average access delay,

and standard deviation of storage usage among CCMP, DPC,
PNCC, LDCC, and NCLCC with different caching node ratios.
As caching node ratio increases, success ratios of all five
schemes improve. CCMP enjoys the highest success ratios
among all schemes. Meanwhile, Fig. 5(b) shows that, with
more caching nodes, the average access delays of all schemes
decline, as a result of easier access to caching contents. In
Fig. 5(c), the interesting convex shape of standard deviation
might have suggested an ”optimum” caching node ratio, in
which success ratio is close to the best and a collection of
“core” nodes are used to cache popular contents. Compared
with other four schemes, our CCMP scheme achieves better
success ratio (up to 28% gain), shorter access delay (about
21% lower), and slightly more diversed storage usage.

In Fig. 6, we compare success ratio and average access delay
of these schemes with different content sizes. As the content
size increases, each node caches fewer contents, lowering
success ratios and increasing access delays. The superior
performance of CCMP is clearly shown.

Storage usage of different types of nodes in the network
is shown in Fig. 7. We only compare CCMP, NCLCC, and
LDCC because NPCC and DPC have been shown to be much
inferior than other three in Fig. 5 and Fig. 6. Note that the
results in Fig. 7 have been multiplied with the ratios of these
types of nodes in networks, so the overall height of each
column represents the average cache storage usage. Our first
observation is that more storage is consumed as the content
size increases. Secondly, LDCC relies heavily on taxi (�T ).
This should have been caused by the predictive method of
identifying caching nodes with better chances to visit different
regions. Furthermore, CCMP consumes slightly more storage
space than NCLCC and LDCC, some of which are caused by
the interesting usage of users without cars (�O). With such
a slight increase in cache storage usage, CCMP is able to
achieve about 15% gains in success ratio (see Fig. 6(a)).

We evaluate CCMP’s success ratio with different pv in
Fig. 8. As pv increases, more users have personal vehicles
and, thus, their mobility patterns are less predictable, lowering
success ratios for CCMP. A network scenario with different
number of people (75-people: a total of 325 nodes, including
30 RSUs and 295 users: 75 people, 100 buses, and 120
taxis) is also shown in Fig. 8. With an increased number
of people in the network, CCMP’s success ratio actually
increases, underlying its capability of taking advantages of
different nodes’ mobility patterns.

TABLE IV
IMPACT OF CONTENT NUMBER

Content Number Success Ratio

100 0.241
1,000 0.167
10,000 0.134

100,000 0.113

On Table IV, we show the success ratio of different content
numbers. It can be seen that success ratio decreases as the
number of contents increases. This can be explained with
the increasing difficulties of finding hits with more contents.
However, even as the number of contents increases by a 100-
fold, the successful ratio of our CCMP scheme is only reduced
to about a half, underlining its robustness.

VI. CONCLUSION

In this work, we have proposed a novel scheme, termed
CCMP, to support the content caching, request, and delivery
in VCCN. Utilizing the trajectory history records of different
vehicles, CCMP is able to predict the probability of their next
visits to different hot regions in the area. Caching nodes are
chosen based on the sojourn time and caching contents are
decided from their popularity. We have presented our extensive
simulations on the CCMP scheme and compared it with several
other state-of-the-art schemes in success ratio, average access
delay, and storage usage. It has been shown that CCMP enjoys
a higher success ratio and lower access delay and can be a
strong candidate for VCCNs. In our future work, we plan to
investigate more accurate predictions of mobility patterns and
use such predictions to enhance caching decisions.
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