
The Beauty and Joy of Computing1

Lab Exercise 5:  Using Lists for Data

Objectives
By completing this lab exercise, you should learn to

● Describe properties and operations on a list data structure;
● Use list operation blocks in BYOB to write programs that use lists;
● Write code using the list index iteration pattern in a variety of settings; and
● Describe and implement two different ways of rearranging items in a list.

Background (Pre-Lab Reading)
You should read this section before coming to the lab.  It describes how various things work in 
BYOB and provides pictures to show what they look like in BYOB.  You only need to read this 
material to get familiar with it.  There is no need to actually do the actions described in this 
section, but you certainly can do them if it would help you follow along with the examples.

In the lab activities up until this point, we have typically dealt with one or two numbers at a time. 
You can solve some interesting mathematical problems this way, but one of the strengths of 
computers is their ability to process large amounts of data. Imagine writing a program that kept 
track of the grades of 30 students in a class - would you create a different variable for each 
individual student? That would be pretty impractical even for 30 students, but imagine what it’s 
like for a university to keep track of 17,000 students or the IRS to keep track of 300,000,000 
social security numbers. What we need is a way to keep track of a collection of data using a 
single variable, organizing it so that we can use it in the way we need. Methods for organizing 
collections of data are called data structures, and we explore one of the simplest possible data 
structures in this lab.

Lists

A simple way to organize information is in a list. We use lists all the time in daily life. We make 
shopping lists, to-do lists, and mailing lists. Each of our lab exercises starts with a list of 
objectives, and ends with a list of new terms used in that lab. At the start of a semester, each 
instructor gets a list of students that are in their class. What I just gave you in this very 
paragraph was a list of examples of lists (got that?). Like a lot of commonly-used concepts, we 
don’t often step back and ask what are the important properties of this well-understood idea, so 
we’ll consider this carefully now.

A list is a collection of items, which are ordered in a sequence.  Since they are in a sequence, 
there is a first item and a last item in the list, and for every item we can identify the next item in 
the list. If we count from the first item in the list, every item has a position, which we usually call 
an index, in the list. For example, consider a list of errands we have to do: get gas, pick up dry 
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cleaning, do grocery shopping, and pay bills. The first item in the list is “get gas”, the last item is 
“pay bills”, and the item at index 3 is “do grocery shopping”.

Given these properties of a list, we can describe some actions we might want to perform on a 
list. A common action is to add a new item to the end of a list. For example, with our list of 
errands we might decide to add “meet Jim for lunch” to the list, and if we were keeping a written 
list it would naturally go at the end of the list. More generally, we might add items at other 
positions in the list, so if our list is prioritized in the order we need to do things, we might want to 
put “meet Jim for lunch” as a higher priority item, right after “get gas”, so we would insert the 
new item at index 2. Think about what happens to the position of the other items in this list when 
this happens: “pick up dry cleaning” is no longer in position 2 (since that’s where the new item 
is), but is now at index 3. In fact, everything after our insertion has its index increased by one, 
since there is one additional item before it now. This is important to remember: an item’s index 
is not fixed, since additions and deletions before the item will cause its index to change.

Other operations include deleting an item from a list, so if we were near the dry cleaning store 
doing something else, we might go ahead and pick up our dry cleaning and delete it from the 
list. Deletions are just like arbitrary insertions: while deleting the first or the last item from a list is 
probably most common, in general we can delete any item at any position in the list. One other 
way we might change a list is to replace an item of the list with something else - for example, if 
we later decide that we’d rather meet Jim for coffee, we can replace the item that says “meet 
Jim for lunch” with the new entry “meet Jim for coffee”.

The actions we just described are all the ways we might want to change a list, but we also 
would like to look at items in the list to learn some information, even if we’re not changing the 
list. We might want to determine how many items are in a list - for example, our original list 
(before we thought about Jim) had four items in it, so we say it had length 4. We can also ask 
for a particular item from the list. Just like deletions and insertions, we often are interested in 
either the first or last item in a list, but we could also ask for the 3rd item (or more generally for 
any item using its index). Finally, we might ask whether a particular item is in a list. For 
example, you might wonder if you need to go grocery shopping, which is the same as asking 
whether “go grocery shopping” is on your to-do list.

Hopefully all of the previous discussion was clear and somewhat obvious. There are many 
things that we work with on a daily basis, but it often surprises people how difficult it can be to 
clearly define these things and the operations we might want to perform on them. This is a very 
important skill for a programmer! You must be able to very precisely and clearly describe what 
you are working with, and how you can work with it.

Lists in BYOB

Programs often manage lists as part of their operation. The examples we described in the 
previous section might appear very directly in a program to manage a to-do list. We might also 
have a program that manages student records, and in that case the program would manage 
several lists: lists of students, lists of classes they took, lists of grades, lists of awards they 
received, etc.  Almost every modern programming language, including BYOB, provides a way to 



work with lists. There is even a programming language named LISP (for LISt Processing) in 
which everything is a list - all data is stored in lists, and programs are lists of instructions that 
are stored exactly like data lists. BYOB can store a list in a variable, can pass lists as arguments 
to blocks (functions), and provides blocks to perform each of the list operations we described 
above. List operations are all located in the “Variables” category of the blocks palette.

Lists can be stored in regular variables, but there are also special variables that are just for 
storing lists. You create a list variables using the “Make a list” button in the blocks palette. The 
following picture shows this “Make a list” button, along with a list that we made named “to do”:

While the “to do” list variable looks practically identical to a regular variable, there’s a subtle 
color difference: list variables (and list blocks) are red, while regular variables and associated 
blocks are orange. The “Make a list” button creates an empty list. This might be a bit of a 
strange concept when you first see it - an empty list? How can it be a “list” if it doesn’t have any 
items? This doesn’t match up very well with our intuition of a list, but it’s not that different from 
starting a to-do list on paper: We pull out a blank piece of paper, write “To Do” at the top, and 
this is the start of our to-do list even if it doesn’t have any items on it yet. You can add items to 
the end of a list with the “add” list command block, so we’ll use that to set up our to-do list. 
Notice the check beside the “to do” block in our picture above, which makes it a watch variable 
and just like the watch variables we’ve seen before this displays the value of the variable on the 
stage in what we call a “watch box.” List variable watch boxes have a special form, showing the 
item at each index. The following picture shows the four “add” blocks that we execute to set up 
our list, and the resulting  list displayed in its watch box:

Pay attention to several things in the displayed list: the name of the list (to do) is at the top of the 
display, each item is shown with its index, and the length of the list is shown at the bottom. The 
shaded area in the lower right corner allows you to resize the box if you’d like to, and there’s a 
“+” button on the lower left that allows you to manually add items to the list through this watch 
box. You can click on any item to select it and edit it, and when you do that an “x” appears that 
allows you to delete the item. You can also click on the top of the box to drag it to a different 
position on the stage. But of course, changing a list by typing in the watch box is not what we 
want to do - we want to change the list under the control of our program, using BYOB blocks!

Returning to the example of the previous section, when talking about operations we might want 
to perform on a list, we said we might want to insert a new item (like “meet Jim for lunch”) in the 



list at index 2. There’s a block for that! The following picture shows the block that performs this 
action, and the result of executing that block on the list contents:

Notice that the index slot, which we have set to 2, has an arrow that will open a drop-down 
menu that contains options “1” (to insert at the first position), “last” to insert at the end, and “any” 
which will insert at a random location. These are the most common positions to insert, but you 
can type anything you want to in the box (like we did when we put in “2”), or you can drag a 
variable or reporter block into the index parameter. In our discussion above, we mentioned that 
indices of the items later in the list will increase by one, which is obvious from the picture. For 
example, “pick up dry cleaning” is now shown at index 3. We talked about deleting items from 
the list as well, and the BYOB block that will delete the index 3 item (which is “pick up dry 
cleaning”) from the list is shown below, along with the result when applied to the last list:

There’s also an “all” option in the drop down menu for the first delete parameter, which will 
delete all items from a list so that it is empty again.

The last operation we described that can change the list is to replace an item with a new value. 
The following BYOB block will replace the index 2 item (now “meet Jim for lunch”) with the new 
value “meet Jim for coffee”, with the resulting list shown on the right:

BYOB also provides reporter blocks to determine the length of a list and to get a specific item 
from a list, shown below:

         



There is also a predicate to test if a particular item is in a list:

Processing a List

There is a loop pattern that is very common when processing a list. In particular, we often want 
to step through a list and do something with each item. We might be looking for a specific item 
(in which case the “do something with each item” might be a comparison), or looking for the 
minimum value in a list of numbers, or adding up the sum of the numbers in a list. Since the 
overall structure of these operations are similar, and this structure is very common in programs, 
we’ll call this the list index iteration pattern. In software engineering, a pattern is a reusable 
solution to a commonly occurring problem - a general software structure that can be used in 
many situations by making well-defined modifications or additions. There are several books 
written on common patterns in programming, and this is often a topic of discussion in a software 
engineering class. Here’s the idea: we want to go through the list, with an variable stepping 
through each index in the list. Here’s the basics of this pattern, using a list of numbers that we 
have named “values”:

This will step through the list item by item (iterating the number of times in the length of the list), 
updating the index so it starts at 1 and then goes to 2, then 3, then 4, and so on. This allows us 
to look at one item of the list in each iteration of the “repeat” loop.

As an example of this pattern, let’s say we want to add up all the values in a list of numbers. In 
this case, we want to add each list item (i.e., each value) to a running total. This is also a 
common pattern, called the accumulator pattern - we are accumulating the answer as we step 
through the list. The key components of the accumulator pattern, combined with the list index 
iteration pattern, are the following: a variable declaration of the “accumulator variable” which will 
hold our answer, initialization of this variable, and updating the variable for each element inside 
the loop. As a useful example, consider the following script to add up all the values in the 
“values” list:



Keep in mind that accumulating an answer does not necessarily mean adding up the values, 
even though that’s a natural interpretation of the term “accumulate.” We could multiply to get the 
product of all values in a list. We could update the maximum value to determine the largest 
value in a list. We could “join” strings together to create a long string containing all items in the 
list. These are all examples of the accumulator pattern, which we see over and over again in 
almost all programs.

Swapping Items in a List

A common action that is performed on lists is to swap two items.  If we have a list containing 
four characters - (a,b,c,d) - and we swapped the 1st and 3rd items, it will change the list to 
(c,b,a,d). Swapping is done efficiently by using the “replace item” built-in block, but it is a little 
tricky. In the example of swapping the 1st and 3rd items, we could think of doing something like 
this:

If we do this on the original list, the result is (c,b,c,d), and we have completely lost the “a” that 
had been in the first element, and don’t have a way to recover it! The solution to this problem is 
simple once you understand it, but not obvious at first.

To describe the solution, let me tell you a story1 that might help: When my kids were younger 
they were very picky about what they wanted to drink, and what they wanted to drink it out of. 
My son had his favorite glass with a tyrannosaurus on it, and my daughter had her favorite glass 
with a cat.  My son really liked apple juice, while my daughter would only drink cranapple juice. 
And if you put the wrong drink in the wrong glass, beware! You would think the world was 
coming to an end! Here’s a picture of the apocalypse-inducing situation:

How can we swap the drinks in the glasses without throwing any juice away? The answer is to 
use a spare glass:  we pour the cranapple juice into the spare glass, then pour the apple juice 
into the tyrannosaurus glass, and finally pour the cranapple juice from the spare glass into the 
cat glass. Sure, we have to wash an extra glass, but we didn’t waste any juice, and we narrowly 
avoided the end of times.  Hopefully you see how this analogy relates to lists in BYOB and 
swapping items: the spare glass is an extra variable (a script variable would be great for this), 
and pouring juice from one glass to another is the same as using the “set” and “replace” blocks.

1 Not really a true story. But it could have happened!



Activities (In-Lab Work)
The following activities describe what you are supposed to do during lab time.

Activity 1: This activity is a little different from the ones you’ve had in previous labs. Rather 
than producing code to do something useful, the goal is to explore how certain things work in 
BYOB, and answer questions based on what you learn. You can determine all of the answers 
by experimenting with the blocks in BYOB, but you’ll need to decide how to do this yourself. 
This is a great thing about working with computers - if you don’t know how something works, 
you can usually try it out and discover how it works pretty easily. The questions are listed here, 
but you will provide your answers on the post-lab quiz -- during lab time you should experiment, 
explore, take notes, and come up with answers to these questions, but save the answers for the 
quiz.  Note that you answer on the quiz should say not just what the answer is, but you will need 
to describe what you did to determined the answer. Here are the questions:

● An operation is “case sensitive” if strings that differ only in the case of characters (upper 
or lower case) are treated differently - in other words, in a case sensitive operation, 
“Alonzo” is treated differently from “alonzo”.  Is the “=” operator in BYOB case sensitive?

● Is the “contains” list predicate case sensitive?
● The valid index values for a list are integers from 1 to the length of the list, inclusive.  

What happens if the “item … of …” block is given an invalid index (either too large, or 
possibly a negative index)?

● What happens if the “insert … at … of …” block is given an invalid index?

Activity 2: In this activity, you will write BYOB scripts to manage a player list for a multi-player 
game. In particular, your code should maintain a list of player names so that it can tell when a 
player is a new or returning player.  This list should start out empty, and then your script should 
make a “welcome” screen that asks the user for their name, something like this:



You should make your own choice of sprite and welcome message (using the “ask” block) - 
don’t just copy what I did.  There is only one requirement on the welcome message: don’t be 
boring!  (Just asking “What is your name?” is boring.)  Once you get the user’s name, you 
should use the list “contains” predicate to determine if they are in the current player list.  If they 
are, you should welcome them back - for example, if they entered “Kotter” as their name and 
they had been here before, you should say “Welcome back, Kotter!” You can modify the 
message a little bit, but two things are required and important: (1) It should be grammatically 
correct, and with proper spacing (space between words and after punctuation) - don’t be sloppy! 
(2) You must have something in the “say” bubble both before and after the player’s name (in my 
case, “Welcome back, ” was before, and the exclamation point was after.  You’ll use “join” 
blocks to construct this response. If the user is new, you should print a different messages with 
the same requirements - something like “Nice to meet you, Kotter!” New users should also be 
added to the player list so that they will be recognized when they return.  Finally, you should put 
all of this into a “forever” loop so that you keep asking for player names.

Once this is working, save your program in a file named Lab5-Activity2.

Activity 3: In Activity 1, you should have found that the list “contains” block and the “=” 
comparison block treat strings differently - one is case sensitive, and the other is not. Create 
your own “contains” predicate that uses a loop and the “=” block so that your block treats case 
sensitivity the same way as the “=” block (and so differently from the built-in contains block). 
This is a straightforward use of the list index iteration pattern, so start with that. Name your 
predicate sensibly so that it’s clear from the block name what it does. Once you get this working, 
replace your use of the standard “contains” predicate in the player list script from the previous 
activity, and test to make sure it does what you think it should.

Save the resulting program as Lab5-Activity3.

Activity 4: Sometimes we want to move items around in a list, and for this activity you will 
create two different blocks that each rearrange items in a list. Consider the problem of having 
our program output a list of “recent players” of the game. An easy way to do this is to modify the 
player welcome dialog that you wrote for Activity 2 so that when a player is already in the list, 
they are moved to the front of the list - if you do this, and you add new players at the front of the 
list, then the most recently seen players will always be the first ones in the list. To accomplish 
this, make a “move … to front of …” block that moves an item to the front of a list. This block 
should look like this:

This is fairly easy to accomplish using the “delete” and “insert” built-in BYOB blocks, but be 
careful about the index. Your block should not mess up the list if it is provided with an invalid 
index!

The second way to rearrange a list it to swap two items, as described in the pre-lab reading.  
You should create a block that does this, and it should look like this:



To accomplish this, use the “replace item” block, using “spare storage” as described in the Pre-
Lab reading (do not use “insert” or “delete” for this part of the solution).

When you have created and tested these two blocks, save your program as Lab5-Activity4.

Activity 5: For this activity, you are to make a reporter block that takes a list of player scores 
(each one being a positive integer) as a parameter, and reports the high score. This is just an 
example of the accumulator pattern described in the Pre-Lab reading.  In fact, you can define a 
particular (and very simple) reporter block so that this activity can be solved by taking the code 
in the accumulator pattern example from the Pre-Lab reading and replacing exactly one block 
with your custom block (you will also report the answer rather than “say”ing it). There’s even a 
hint about this in the Pre-Lab reading.  Test your solution, and save it as Lab5-Activity5.

Discussion (Post-Lab Follow-up)
Move To Front: In Activity 4, you created a “move … to front” block. It turns out that this is a 
very simple and surprisingly useful concept. We’ll describe ways talk about the efficiency of 
algorithms in the next lab, but for now some intuition should be good enough. Think about your 
“contains …” block from Activity 3: If you have a list of 1000 items and you scan the list looking 
for a value, then if the item is at the end of the list it takes a long time to find since we must go 
through everything before it in the list. However, if the item is at or near the front of the list, we 
will find it much faster. An algorithm that works with a list could move each item to the front of 
the list every time it is accessed, and then the items that are accessed most often naturally stay 
near the front of the list. Consider a program that counts how many times each word occurs in a 
document. The word “the” occurs a lot, so will stay near the front of the list and be found quickly. 
The word “mytacism” would not appear much1, if at all, so would not be near the front of the list.

Moving accessed items to the front of a list is not a difficult technique to implement, and in fact it 
seems a little simple-minded: a very simple rule that doesn’t make complex decisions about 
which items should be placed at what locations in the list. What’s great about this is that, despite 
the fact that it is very simple, it works remarkably well. While the math is beyond what we do in 
this class, a famous computer science research paper2 showed that this simple technique is no 
more than twice as slow as any other rule - even if we try to be super-intelligent about how to 
order the list, and if we can make a plan for ordering the list knowing all of the list accesses that 
will ever happen in the future. One of life’s great pleasures is when simple and easy things work 
so well!

Terminology
● accumulator     pattern  : A software structure in which an answer is “accumulated” by 

updating a running answer as we go through a list.  The running answer can be a sum if 
we’re adding up items in a list, the largest value seen so far if we are computing the max 
at each position, or many other possibilities.

1 Yes, it’s a real word - look it up!
2 D. Sleator and R. Tarjan. Amortized efficiency of list update and paging rules. Communications of the 
ACM, Vol. 28, No. 2, Feb 1985, pp. 202-208.



● data     structure  : A way of organizing a collection of data in a program, such as putting 
data in a list.

● index  : The position of an item in a list (e.g., the second item in a list has index 2).
● item  : A generic term for something in a list. Items in a list can be numbers, strings, or 

even other lists.
● LISP  : A programming language in which data as well as programs are organized and 

presented as lists.  LISP stands for “LISt Processing”.
● list  : A data structure in which data is stored in a sequence of items, where each item has 

a position (or an index) in the list.
● list     index     iteration     pattern  : A pattern in which a loop examines a list item-by-item, 

updating an index variable at each step of the iteration.
● list     length  : The number of items in a list.
● pattern  : A reusable software solution to a commonly occurring problem.

Submission
In this lab, you should have saved the following files:  Lab5-Activity2, Lab5-Activity3, Lab5-
Activity4, and Lab5-Activity5.  Special note: Lab5-Activity2 should be submitted, since that code 
is modified in Activity 3 and you need to turn in the original code. However, if your Lab5-
Activity5 file contains all of the code produced in Activities 3 and 4 in addition to Activity 5, you 
can just turn in the Lab5-Activity5 file. Turn these in using whatever submission mechanism 
your school has set up for you.
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