
The Beauty and Joy of Computing1

Lab Exercise 6: Experimenting with Algorithms

Objectives
By completing this lab exercise, you should learn to

● Describe and implement basic searching and sorting algorithms;
● Use the BYOB timer to measure the running time of a script;
● Instrument code to count how many times specific operations occur; and
● Understand the difference between linear and quadratic time complexity, and its impact

on the speed of a program.

Background (Pre-Lab Reading)
You should read this section before coming to the lab. It describes how various things work in
BYOB and provides pictures to show what they look like in BYOB. You only need to read this
material to get familiar with it. There is no need to actually do the actions described in this
section, but you certainly can do them if it would help you follow along with the examples.

When computers deal with lots of data, the data should be organized in such a way that it can
be worked with efficiently. In the the last lab, we introduced the idea of data structures, with the
list being the simplest data structure. The two most common things we do using a list are
searching (finding something in the list) and sorting (ordering the list by some rule), and while
these might seem like simple things to do there are in fact entire books that have been written
on just searching and sorting data in a computer.2 In this lab we’ll look at a few ways of
searching and sorting data in a list, and in the process we will explore concepts of algorithms
and algorithm time complexity.

Searching in a List

First consider the problem of searching a list. Recall that problems are defined by input/output
relationships, so when we talk about the problem of searching a list, we’re not implying any
particular algorithm for doing that. In the last lab, you actually wrote two different searching
functions: one to search a list for a particular value (your case-insensitive “contains” predicate,
for searching for a player’s name), and one to search a list for the largest value (your high score
reporter block). We are going to concentrate on the latter block in this lab, and modify it so it is
useful in a sorting procedure. In particular, let’s make it a general-purpose “max” block (in other
words, don’t refer to “high scores”), with two differences from a simple block from Lab 5: first, it
will report the position of the maximum item rather than the value of the maximum item, and
second it will only look at some prefix of the list , where a prefix is some number of elements at
the beginning of the list, like the first 10 elements. The number of elements to consider will be a

1 Lab Exercises for “The Beauty and Joy of Computing” [This is the final version for the Fall 2012 class]
Copyright © 2012 by Stephen R. Tate - Creative Commons License
See http :// www . uncg . edu / cmp / faculty / srtate / csc 100 labs for more information
2 See, for example, The Art of Computer Programming, Volume 3: Sorting and Searching, by Donald
Knuth (Addison-Wesley, 1998), or Sorting and Searching by Kurt Melhorn (Springer-Verlag, 1984).

http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs

parameter along with the list, and we would like to be able to say “give me the position of the
maximum element from the first k elements of this list,” resulting in a block that looks like this:

To implement this block, the algorithm that we will use simply scans through the part of the list
that is indicated, and will look at each element comparing it with the largest it has seen so far.
This is similar to the list index iterator pattern from the last lab, with a couple of changes: we will
initialize the answer variable to the first element in the list rather than to a constant value, and
we will repeat based on the prefix size parameter rather than the full length of the list. The result
is the following definition:

Note how skipping past the first item in the list before starting the loop requires us to subtract 1
from the number of loop iterations, but it means we didn’t have to make any assumptions about
the data in the list (in the previous lab, we assumed that all scores were non-negative integers -
you might want to look back at your solution and see how that assumption affected the
algorithm, and consider what would happen if that assumption were violated).

This solution is a more general solution to finding the maximum value in a list than what we’ve
done previously, and it is useful even in the more restricted cases that we considered before.
For example, if we want to find the position of the maximum value in the entire list (rather than
just a prefix) we could use:

If we wanted to actual maximum value (rather than the position) we could use:

These two additional problems (maximum position in the entire list and maximum value in the
entire list) were implemented using just a few operations in addition to our “max pos from...”
block, so using the terminology we introduced in Lab 3 we could say that we reduced the
problem of finding the maximum value to the “max pos from...” problem. Notice that reductions
are between problems, not between algorithms or programs or scripts - it relates problems in a
fundamental way, and applies no matter how those problems are solved with particular
algorithms.

Let’s consider the time complexity of our “max pos from...” block. The first thing to notice is that
the repeat loop iterates roughly pNum times3 and pNum can be as large as the length of the list.
Let’s consider just that longest case right now, and use a variable n to denote the length of the
list as is common practice in computer science. Looking at the definition, everything is constant
time except for the fact that we use a repeat loop, which repeats some constant time operations
roughly n times. As a result, the time is no worse than a constant times n, which we call linear
time. The important take-away lessons from this section of the reading is that we have designed
a very general-purpose maximum finding function, which has linear time complexity.

Sorting

In this section, we will use the “max pos from...” block that we described in the previous section
to make a function that sorts a list, meaning that it rearranges the list so that it has the same
elements but they are ordered from smallest to largest. Let’s think about how we might use our
“max pos from...” block to sort a list. If we used this to find the largest value in the list, we know
where it should go in the final sorted list: at the end. We can’t just replace the item at the end of
the list with the largest item, because that would overwrite and destroy that item - remember, we
just want to rearrange the list, while keeping all of the data. So rather than replacing the item at
the end of the list we swap it with the maximum one that we found. We can use the “swap” block
that we wrote in the last lab, and a solution for that problem looks like this:

Looking at an example of a list, this transformation might look something like this:

While we moved the largest value to the end of the list, which is its correct final position, we still
don’t know anything about the rest of the list, so everything except the last item is still labeled as
“still unsorted.” If we were to make BYOB blocks for just this sequence of operations, we first
find the maximum of the entire list, and then swap it into the last position, giving:

3 “roughly” because it’s really pNum-1, but that doesn’t make a significant difference in time complexity.

Next, consider repeating this process. Forget about the very last item in the list, since it’s in the
right place, so we’ll look at the n-1 remaining unsorted items. We find the max in the first n-1
items, then swap that to place n-1. In the case of our example, the max of the remaining items is
86 - it’s already in the right place, so now what? The interesting thing is that we don’t need to
worry about that at all. If you look at the way the “swap” block works, we can swap a position
with itself without any harm, so we just do the same thing as above. Then we repeat this for
position n-2, and then position n-3, and so on. After five rounds of this our example list looks like
this:

Generalizing what we’re doing to an arbitrary position, indicated by variable sIndex, we have the
following two block sequence that we want to evaluate for values of sIndex that start at n, then
n-1, n-2, and so on:

When can we stop? It turns out the last sIndex value we have to consider is 2, since once the
second item is in place the first one is the only one left, and it must be in the right place. You
should recognize this pattern: We’re counting down indices, so this is just the list index iterator
pattern, with a decreasing index. Pulling all the pieces together, we get the following definition
for a “sort” block:

This is the most complex script we’ve done so far - make sure you study this and are
comfortable with how and why it works, because you’ll be working with this in the lab activities.

Considering the time complexity of this sorting algorithm, the main thing to observe is that the
sorting algorithm repeats roughly n times, and inside the loop it does a “max” operation which
can take as many as n steps. The total number of operations is therefore something like n times
n, so the total time is some constant times n2, which is what we call quadratic time . A careful
analysis of this is in fact a little more complex, but the end result is still the same: this is a
quadratic time complexity.

Timing BYOB Scripts

We’re interested in how fast our algorithms and scripts are, so we’ll next look at how to
experiment with BYOB scripts in order to determine various measures of time and speed.
Before we get into the timing details, we need to address one point in the “Block Editor” - when
you were first exposed to the process for defining blocks in Lab 3, the “atomic” checkbox at the
top of the Block Editor was pointed out and you were told that you could safely ignore that for
the time being. However, this checkbox does have a very big effect on timing, as we’ll describe
in the “Discussion” section below. For now, it is very important that you make sure that all blocks
that you define do not have the “atomic” option checked. So when you build these blocks for the
activities below, go through each definition - for “sort”, “max pos from...”, and “swap positions...”
- and make sure the “atomic” option is unchecked, like this:

Without fully describing what this does now, just be aware that this will make your scripts slower
(much slower), but that’s OK for this lab.

In order to experiment with the efficiency of your scripts, you will need to be able to generate
test data to use. For sorting, the simplest form of test data would be a list of a certain size that
contains random values in some range. What I would recommend for this lab activity is that you
create a list named “test list” and build the following small script in the scripts tab of your current
sprite:

By having this sitting in the scripts area, you can easily set the list size to whatever you want (it
is 40 in the example above) and click the script, which will create a list that you can use for
testing. This is just a slightly more involved version of what we did in Lab 2, where we left a “go
to …” block in the scripts area to easily reset Alonzo’s position on the stage - in this case we’re
“resetting” our test list to a random list of values.

To actually time scripts, BYOB has a built-in timer which can be used. This timer is constantly
running, and the timer can be read or reset to zero using blocks that are in the “sensing”
category. To reset the counter to zero, use the following command block:

There is no way to stop the timer, but you can copy the current value out to a variable, which will
save the timer value at a certain time (similar to taking a lap time on a stopwatch). Therefore, to
time a script you can put the “reset timer” block at the top of the script, and a block like

at the bottom of the script. You can set up the “end time” variable as a watch variable so you
can see what the value is, although you get more digits of precision if you have your sprite “say”
the end time, like this:

Make sure you enclose only the operations you want to time between the “reset timer” and “set
end time ..” blocks - in particular, if you have any set-up operations that initialize an input array
or something similar, do not put those in between the timing start/end measurements or else
your times will be larger than they should.

Counting Operations

Using the BYOB timer to measure the speed of programs and scripts can be interesting, but if
you’re really trying to understand the efficiency of an algorithm then this does not provide the
information that you need. Why? Because there are many things that go into a measured time
that are not properties of the algorithm - things like speed of the computer, other operations
taking place on the computer, programming language or environment, etc.

In general, when we analyze the time complexity of an algorithm, we consider the number of
steps that the algorithm takes, where a step is some basic operation like an addition,
multiplication, comparison, etc. It has become standard practice in searching and sorting
algorithms to count the number of comparisons that are made between data elements, since
that is the core operation that drives all data movement and algorithm decisions. To get the best
understanding of how many steps an algorithm takes, it is best to do this by analyzing the
algorithm mathematically. This way, you can consider the efficiency of an algorithm before
taking the effort to implement and test the algorithm, and you know you are looking at the
inherent complexity of the algorithm rather than some side-effect of the way your
implementation is running. Consider a situation in which you have to write a complicated
program, and you think of three different algorithms to solve one of the core problems in this
program: a little time up front analyzing the algorithms can give you a good indication of which
one will be best and you can spend your time implementing that one algorithm rather than
having to implement and test all three. This kind of analysis is beyond the scope of this class,
although you are expected to start recognizing certain “patterns” of algorithms and
understanding the corresponding time complexity of algorithms that fit each pattern. If you take
further computer science courses, you will encounter more advanced analysis as a recurring
topic, and you should get pretty good at it after a few courses! For this particular lab we’ll take
an experimental approach, where you instrument the code that you are testing - instrumenting
code refers to adding additional program statements or blocks that give you information about
how the program is running, even though those code additions do not help in computing the
answer that you’re after. In this case, our instrumentation will count how many operations the
code performs while it is running.

To instrument a searching or sorting algorithm to count the number of comparisons, we define a
global variable named “compareCount”, set it to zero before we start the script that we are
testing, and add the block

to be executed every time a comparison is made. For the most part, deciding where to put these
change blocks is easy: find every comparison that is made in your script, and add this block
right on top of the block that makes the comparison. This works fine for sequences of blocks

and for comparisons that are made in “if” blocks, but there is one tricky case: a repeat block in
which there is a condition that makes a comparison:

In this case a comparison is made for every iteration of the loop (actually, if the loop iterates n
times there will be n+1 comparisons - do you see why?). If we put the “change” block right
before the “repeat” block that includes the comparison then it will only get executed once, not
the n+1 times needed to reflect the number of comparisons made by this loop. While the basic
idea of incrementing the counter before each comparison is good, the position in the script that
is executed before the comparison isn’t as clear as in other cases - in this case, the first time we
enter the loop we execute whatever is on top of the “repeat” block right before the comparison,
and in the case of the loop causing an iteration, the block that is executed immediately before
the comparison is the block at the bottom of the script inside the repeat C-block! If we put a
change block in both of those places, like

then we are correctly counting the number of comparisons.

The main concepts you should have gotten out of this pre-lab reading are the following: You
should understand how the simple searching and sorting scripts given above work. You should
understand how to use the BYOB timer to time scripts. And finally, you should understand how
to instrument code to count operations - in this case, we are counting comparisons.

Activities (In-Lab Work)
Activity 1: For the first activity, build and test the scripts described in the pre-lab reading: the
“max pos of …” block, the “swap positions …” block, and the “sort …” block. To test, create the
random list builder script described in the section “Timing BYOB Scripts”, and generate a
random list of size 10. Set “test list” as a watch variable so you can see what values it contains,
and then pull out and test the “max pos in …” block with various values for the prefix size
parameter. Assuming that works correctly (if not, fix it before moving on!), pull out the “sort”
block and run it with “test list” as the argument. You should be able to see the “test list”
changing in its watch box, and at the end everything should be in sorted order. When you have
these scripts working correctly, save your work as “Lab6-Activity1”.

Activity 2: [Very important : Before st arting this activity , double - check all of your block
definitions and make sure that the “ atomic ” option is unchecked in each of your definitions .] For
this activity, use the BYOB timer (as described in the pre-lab reading) to time the “max pos of
…” and “sort” functions. You should uncheck the “test list” list so that it is not a watch variable -
there’s no need to take up computer time updating the display of the list when you’re just
interested in is how long it takes to do the computation. You should start by using the list

creation script that you made for testing in the previous activity to create a list of 500 random
numbers, and time how long it takes to compute the position of the maximum value in this list.
Then run the same test again! The reason for duplicating the test is that timing can vary if you
run the same test multiple times, so you want to make sure you didn’t get an inaccurate reading
the first time. If your two times are roughly the same, then we will call that “good enough” and
you should record the average of your two times. If they are not close (if they differ by more than
2%), then keep running the test until you get enough consistent times to be confident in your
timing. You will then repeat this process with lists of length 1000 and 2000, so that in the end
you can make a table that looks something like this:

List Size Time (seconds)

500 20.50

1000 41.06

2000 81.98

You should type these numbers up into a table - use Microsoft Word or put them in an Excel
spreadsheet, whichever you are more comfortable using, and save them in a filed named Lab6-
Times.doc or Lab6-Times.xls (you will be submitting this file along with your code).

Next, do the same thing for the “sort” block - this is substantially slower, however, so you need
to use smaller list sizes. For “sort”, test your code with lists of size 20, 40, and 80. One
warning: you have to create a new list for every test of the “sort” block. The reason for this is
that running “sort” on your test list rearranges it into a sorted list, so if you just clicked “sort”
again on the same list it would be “sorting” an already-sorted list! Sorting an already-sorted list
might have a different time than sorting a randomly ordered list, which is what you’re really
trying to measure. Type up these times in a separate table in the same file as your first table of
results, and make sure you label each table to indicate what it represents.

When you have finished all of this, save your BYOB code (including your scripts that do the
timing) as Lab6-Activity2, and save your tables in a file as described above.

Activity 3: For this activity, you are to instrument your code so that you can count how many
comparisons are made when it runs, as described in the pre-lab reading. The first step is to find
everywhere in the code that it makes a comparison of two items from a list (hint: if you
implement exactly the code given in the pre-lab reading there is only one place where a
comparison is made!). Create a variable to count comparisons, and insert a change block to
increment that variable at the appropriate place(s). Finally, make a small test script that sets the
comparison counter to zero and then calls the block you are testing - this will be practically
identical to the timing scripts from Activity 2, but instead of resetting the timer you are setting the
comparison counter to zero, and instead of reading and saying the timer value your sprite
should be saying the comparison count. Repeat your tests on both the “max pos of …” block
and the “sort” block, using the same list sizes that you used in Activity 2, recording the number
of comparisons made in each case in tables as you did with the times in Activity 2. Helpful hint:
In this part we’re not measuring time, so the “atomic” option in the block definitions does not

make a difference for the results we’re after - because of that, if you go into each definition and
check the “atomic” option, you will get your results much faster!

Save your instrumented BYOB scripts with testing scripts as Lab6-Activity3, and save your
tables as Lab6-Comparisons.

Activity 4: This activity doesn’t actually require you to write any new code or turn anything in.
It’s what we call a sanity check - making sure the values you got in Activities 2 and 3 make
sense. The reason this is given as an in-lab activity is that you should consider this during the
lab time, so that if your answers don’t make sense, you can go back and double-check those
activities to see if you made a mistake somewhere. Then you can correct your files for those
activities before you submit anything!

First consider the “max pos of …” block: This is a linear time algorithm, so if you double the size
of the input, the time should roughly double - that’s what linear time means! The sizes you used
for tests doubled from test to test, so the times and number of comparisons should have
doubled each time as well. Calculate how much the time (and number of comparisons) went up
when you increased the input size from 500 to 1000 items, and also from 1000 to 2000 items.
Was it roughly doubling each time? If so, that’s what it’s supposed to do! If not, then you should
probably re-check your code.

Next, consider the “sort” block: This is a quadratic time algorithm, so what should happen when
the size doubles? Try a few values and see what happens to n2 when you double n. For
example, if n=2, then n2 is 4. If we double n to 4, then n2 becomes 16. Let’s try again: if n=3,
then n2 is 9. If we double n to 6, then n2 becomes 36. Do you see the pattern? If not, try a few
more values and you should see a consistent pattern in how much n2 increases every time n is
doubled. You can also derive this pretty easily as a general mathematical property: what is
(2n)2, and how is it related to n2? Use this observation to check your time and comparison count
tables for the “sort” block. Are the values going up as expected? On this one, don’t expect the
times to work out exactly: if you’re within 10% of the expected increase, you are close enough.

Discussion (Post-Lab Follow-up)
Timing Code in Different Environments: There are many factors that determine how fast a
particular implementation of an algorithm will run. Most obvious is the speed of the processor
running the program, but the programming language and environment can make a huge
difference as well. There are thousands of programming languages to choose from - in the late
1960’s, Jean Sammet did a survey and found about 3,000 programming languages - and we’ve
had over 40 years of inventing new languages since then! Why are there so many programming
languages? Wouldn’t one good language be sufficient? Maybe some day there will be “one
language to rule them all,” but for now the best way to think about programming languages is
that they serve as an intermediate step between how people think and express algorithms and
how computers work and execute programs. Some languages are closer to the way people
think (we call these high level languages), and some are closer to the way computers operate
(we call these low level languages). The job of the programmer is to turn his or her thoughts into
statements in the programming language, and the job of computer tools like a compiler or

execution environment is to turn the programming language into something the computer can
execute. The first step - human thoughts and ideas translated to a programming language - can
be viewed many different ways because different people think in different ways. Alan Perlis, a
famous computer scientist who won the Turing Award (the “Nobel Prize of Computer Science”)
once said “A language that doesn't affect the way you think about programming, is not worth
knowing.” That’s a good way to think about programming languages - they should affect how
people approach problem solving. But as a result, some languages more efficiently translate to
what computers do than other languages.

BYOB is a good example of this. It hides a lot of details that are present in other languages,
taking care of things behind the scenes so you don’t have to worry about them. The “Atomic”
check box controls some of those things. A script is “atomic” if it takes complete control and
can’t be broken up into smaller executable pieces. Atomic scripts can be a little unfriendly to
other scripts since it won’t allow them to run, and some of you have already noticed in lab that if
there is a bug in a script that is atomic it can be very hard to break out of that script and do other
things. A script that is not atomic is checking after every step to see if there are other scripts that
need some time to run, or if there are events to respond to, or if watch variables need to be
updated, or... basically, lots of “housekeeping” tasks. As a result, just setting the “atomic” option
will make a script run much faster - that hasn’t changed the algorithm at all, but has just
changed the environment in which it runs. Unfortunately, there are some strange things in
BYOB with the way scripts are run and overhead for certain operations, and when the “atomic”
flag is checked the performance of algorithms in BYOB doesn’t behave as reliably and
predictably as in most other programming languages and environments. That’s why you were
told to make everything non-atomic, because while it slows everything down, things perform in a
more predictable way. BYOB is not a language for high-performance computing, so most people
don’t worry about this - it does make it a little more difficult to teach about algorithms in that
setting, however!

To finish our discussion of the effect of programming languages and environments on running
time, let’s see how long the same algorithm takes to run when implemented using various
languages/environments. To do this, the sorting algorithm given in the pre-lab reading was
implemented in multiple languages in addition to BYOB: C, Java, and Python. In each of these
languages, a test list of 1,000 random numbers was sorted (all on my laptop - a recent but not
particularly high performance system). The time required is for each language is listed below:

Language Time (seconds)

BYOB non-atomic 20,710 (that’s over 5.5 hours)

BYOB atomic 462

Python 0.05

C 0.000844

Java 0.000588

To put this into perspective, a lot of people like to use Python because it has some nice and
powerful features, but for this particular algorithm it is 85 times slower than Java (not all

algorithms are this much slower in Python - this is a particularly bad case). But BYOB, even in
the “fast” atomic setting, is over 786,000 times slower than Java. When the “atomic” option is
not set, BYOB is over 35 million times slower than Java. Yes, 35 million times. That’s not just
slower, that’s “what-in-the-world-are-they-possibly-doing slower.” While BYOB is easy to use for
beginning programmers, it’s clearly not something you would want to use for any serious
computational problems.

Data Structures for Fast Searching: Many search problems can be solved more efficiently if
the data is ordered or structured in a particular way. This is a deep and sometimes complex
area of computer science known as the study of data structures, and we describe briefly some
examples of things you would learn about by studying data structures. As a simple example, if
we are interested in finding the largest item in a list, if the list is stored in sorted order then we
can easily do this: it’s always the last item in the list, so we can find it in constant time! We will
also see in the lectures that sorted data can be searched for any particular value much faster
than is otherwise possible, using an algorithm known as binary search. The problem with both of
these statements is that the data must be stored in sorted order, and if data changes
dynamically (new items are inserted, some might be deleted, some changed during the
execution of the program), maintaining the data in sorted order is actually quite inefficient. There
are data structures known as heaps that allow fast searches for the maximum value, while
allowing efficient changes to the data as well. There are data structures known as balanced
search trees and hash tables that support searching for particular values even when the data
can change dynamically. Learning about how these work is a standard part of any data
structures class, such as UNCG’s CSC 330.

Sorting: The sorting algorithm that we described in the pre-lab reading is an algorithm known
as “selection sort” (the name comes from the process in which the maximum value is selected,
then the maximum of the remaining n-1 is selected, and so on). As we discussed, this is a
quadratic time algorithm. There are faster sorting algorithms - although it is impossible for a sort
algorithm based on comparisons to be linear time (and you would typically see a proof of this in
an algorithms class, like CSC 555 at UNCG), there are algorithms that are significantly faster
than quadratic. For example, sorting an array of 1,000,000 random integers using selection sort
(implemented in C++ on my laptop) takes almost 15 minutes, whereas sorting that same array
using an algorithm called “quick sort” takes 0.08 seconds - so for that input, quicksort is
approximately 10,000 times faster. It’s not at all obvious how to make such a fast algorithm, and
this is an example of the deep and very useful results that are studied in later computer science
classes!

Terminology
The following new words and phrases were used in this lab:

● algorithm : a well-defined computational procedure that takes some value or set of values
as input and produces some value or set of values as output - the focus is on how
something is produced.

● BYOB timer : a BYOB functionality that is constantly advancing and measuring time, so
that the “reset timer” and “timer” blocks can be used to measure how long any script
takes to run.

● comparison : when used in regard to searching and sorting algorithms, a comparison
means comparing values from the list being sorted - so if you are sorting a list of names,
comparing names from the list counts as a “comparison”, but comparing two indices
does not count as a “comparison” in this sense.

● high level language : a programming language that allows the programmer to work closer
to the way people think about algorithms than the low-level details of how computers
operate.

● instrumentation : code that is put into a program to monitor how various aspects of the
program operate or perform (such as counting the number of comparisons in a sorting
function), rather than the code that is solving the problem of interest.

● instrumenting code : the process of putting instrumentation in a program.
● low level language : a programming language that closely resembles the low-level details

of how computers operate.
● linear time : an algorithm runs in linear time if the number of steps that are required is

proportional to some constant times n, where n is the size of the input.
● prefix of a list : the first values in a list - for example, in a list of 1000 items we might talk

about the prefix of size 100, which is the first 100 items in the list.
● problem : a computational task that is specified only in terms of how correct outputs are

related to inputs - the focus is on what is produced, and not how.
● quadratic time : an algorithm runs in quadratic time if the number of steps that are

required is proportional to some constant times n2, where n is the size of the input.
● sanity check : looking at results of a test to see if they are sensible.
● searching : the problem of looking through a data set for some item that meets some

criterion (such as the largest element, an element that matches a search term, etc.)
● sorting : the problem or rearranging a list according to some rule, such as putting items in

non-decreasing order.
● step : a basic operation which forms the basis of a time complexity analysis - simple

operations such as plus, times, and comparisons are usually considered a single step.
● test data : a data set that is created for the purpose of testing some algorithm

implementation (where testing can be for testing correctness or efficiency).
● Turing Award : the top prize in the field of computer science, much like the Nobel prize is

the top prize in the field of physics.

Submission
In this lab, you should have saved BYOB files Lab6-Activity1, Lab6-Activity2, Lab6-Activity3,
and Word or Excel files named Lab6-Times and Lab6-Comparisons. Note: if BYOB file Lab6-
Activity3 contains all of the code from activities 1 and 2 as well, you only need to submit that
BYOB file (along with your tables). Turn these files in using whatever submission mechanism
your school has set up for you.

	Objectives
	Background (Pre-Lab Reading)
	Searching in a List
	Sorting
	Timing BYOB Scripts
	Counting Operations
	Activities (In-Lab Work)
	Discussion (Post-Lab Follow-up)
	Terminology
	Submission

