
The Beauty and Joy of Computing1

Lab Exercise 8: Send in the clones

Note: This lab is not fully developed. The activities lead you through some exercises that
demonstrate some powerful BYOB features, but are not explained as thoroughly as desired.
Unfortunately, this is as complete as the writeup can be made prior to the lab - complete what
you can, think about the concepts involved, and we’ll talk more about these concepts in class.

Objectives
By completing this lab exercise, you should learn to

● Use the sprite cloning functionality of BYOB to create many sprites for complex
animations;

● Access variables and scripts in other sprites; and
● Understand the basics of object-oriented programming, with object attributes and object

scripts.

Background (Pre-Lab Reading)
You should read this section before coming to the lab. It describes how various things work in
BYOB and provides pictures to show what they look like in BYOB. You only need to read this
material to get familiar with it. There is no need to actually do the actions described in this
section, but you certainly can do them if it would help you follow along with the examples.

In the previous labs, we have worked with a small number of sprites, and every sprite was
specifically created and programmed through scripts that operated on that sprite. Scripts can
create interesting and complex actions for individual sprites, but we often want to have many
sprites. Think about an interesting game: there are often tens or hundreds or even thousands of
characters that you must keep track of. In addition to characters, we might also have other
game items such as weapons, clothing, buildings, that we also need to track. We obviously
don’t want to create a specific sprite for a game in which there are thousands of characters, and
what saves us is the fact that many items share a similar structure and set of actions that they
can perform. A style of program design that handles this very nicely is called object-oriented
programming. While a full explanation of object-oriented design is beyond what we will do in
this class, the basics are easy to understand.

We use the term object to refer to some program entity (in our examples, this could be a player,
building, weapon, etc.) that has values or attributes associated with it and can perform certain
actions (which are typically called methods). For example a player object might have attributes
for the player’s location, health, inventory, etc. A building might have a location, size, structure,
construction material, etc. Notice that these attributes have generic names, and while all objects
of a certain type (or class) might have the same set of attributes, it is the values of those
attributes that makes each object distinct. BYOB supports a particular style of object-oriented

1 Lab Exercises for “The Beauty and Joy of Computing” [This is a preliminary version for the Fall 2012 class]
Copyright © 2012 by Stephen R. Tate - Creative Commons License
See http :// www . uncg . edu / cmp / faculty / srtate / csc 100 labs for more information

http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs

programming in which new instances of objects are created by cloning an existing object, which
carries over its full set of attributes and actions (scripts for that object), and then the program
can adjust these attributes to make each new object distinct.

Activities (In-Lab Work)
In this lab we are going to create a simple memory game. You’ve probably played this kind of
game before - for example, some people play with half a deck of cards, shuffle them up and
deal out the cards face down. Players then take turns turning over pairs of cards - if you match
(two queens, for instance) you take the pair and go again. In our game, we will have a bunch of
Alonzos, but each one has a secret identity! There are two Alonzo’s that are really dragons, two
that are the the little blue character, etc. You will uncover secret identities by clicking on them.

Here’s the basic idea: We’ll start with a single Alonzo that can run scripts, but he will be hidden
and invisible to the user. The only thing this Alonzo will do is create clones of himself, so this
Alonzo is called the parent sprite. The parent Alonzo will have a total of 9 costumes, including
the basic Alonzo costume and eight secret identity costumes. The basic outline of our game
program is then as follows: The parent Alonzo will create two rows of Alonzo’s, each row with
eight Alonzos and a random assignment of secret identities. Since each of the new Alonzo’s is a
clone of the parent, each one will have the 9 costumes of the original Alonzo. How do we keep
track of the secret identity for each Alonzo? That’s precisely what we were describing above as
an attribute, which is a value that can be set and tested or read separately for each clone. We
will see how precisely how this is done in Activity 1 below.

Warning!!! In this lab you will be creating sprites and deleting sprites dynamically. It is easy
(way too easy!) to accidentally delete all your sprites and the scripts that go along with them -
this is super frustrating when it happens (I speak from experience!), and you have to start over if
you haven’t saved your work. Because of this, it is extremely important that you save regularly.
Just get in the habit of clicking the save icon every time you modify scripts so that you can
recover if they end up doing something disasterous.

Activity 1: In this activity, you’ll see how to clone Alonzo and place him in a particular location
and set his secret identity. To start off, open BYOB with a new project, which should include an
Alonzo sprite. An attribute is just a variable that is “For this sprite only,” so the first thing to do is
go to the variables category and click “Make a variable.” Use “secret” for the name, and check
“For this sprite only.” We only briefly explored this kind of variable before, but knowing about the
concept of cloning should allow you to make a little more sense out of this now. When you clone
this sprite, it will also have a variable named “secret” with the same value as the parent Alonzo’s
“secret” variable, but after this point these are two separate and independent variables.
Changing the “secret” variable in the parent sprite has no effect on the child sprite, and vice-
versa. This means that if we have eight (or eight hundred) child sprites, each one will have its
own secret. While we’re setting up this first Alonzo, drag out the “set size” block and set the size
to 40%, click on it, and you’ll have an appropriately-sized Alonzo for this exercise. Finally, you
should add 8 “secret identity” costumes to the Alonzo sprite, using the “Import” button in the
Costumes pane. You can pick whatever costumes you want, as long as they are roughly the
same size as Alonzo. Here are the costumes I used:

We are going to create two blocks for Alonzo, one of which will run in the parent sprite and
create the clone, and the other of which will run in the newly created child sprite to initialize the
new clone’s properties (location, visibility, and secret identity). Let’s start with the latter of those
scripts, which initializes attributes of a newly-created sprite. In most object-oriented languages,
this type of script is called a constructor, because it is used to construct a new object. We need
to set the location for this sprite, set the secret identity, and since the parent sprite will be hidden
we need to make sure this clone is visible. The only slightly tricky in this is the way we set the
position. We’ll use two parameters to denote a row and column number with row values from 1
to 2 and column values from 1 to 8. To set the actual x and y placement we’ll use some
formulas: we’ll allocate a 60x60 block for each Alonzo, shifted by an amount so that we can fit
two rows of eight that are roughly centered on the stage. Putting all these pieces together we
get the following constructor, which you should build:

Next, we’ll make the script that actually creates the clone. This script needs to do three things:
actually create the clone, add this clone to a list of Alonzo’s children so that we can keep track
of them, and then have the clone execute its constructor. To create the clone there is a block in
the “Operators” category called “clone” - note that this is actually a reporter block, because it
provides a reference to the object (the child sprite) that is created. We’ll keep these references
on a list - so you should create a global list named “child alonzos”, and every time we create a
child we’ll add it to the list. This makes it easier to “clean up” and delete all the child Alonzos
when we are finished.

Finally, how do we execute the constructor that we made? This is a little tricky, but we’ll go
through the reasoning, and then show you the code. We want to run the constructor, which is
the “place at...” block, but we want to run this in the child sprite - the one we just created. To
refer to either an attribute or a script that is in another sprite, we use the block that looks like this
(it’s in the sensing category):

The first parameter gives what we want to access, and the second one specifies the object that
we want to use. In this case we want to run the “place at...” script in the child that we just
created - we use the special “the script” block in “Operators” to specify the script we want to run,
so if we have a reference to the child object in a variable named “sClone” then we use the
following construction to refer to this script in the child object:

Now that we can refer to the script, we need to say what we want to do with this script, and the
options are “launch” or “run”, which are both in the “Control” category. The difference between
these two options is whether we run the script and wait for it to complete (this is “run”), or
whether we start the script in its own separate thread and let it run on its own, without waiting for
it to finish (this is “launch”). The “launch” and “run” blocks allow you to specify inputs - just click
on the arrow on the right of the “launch” block.

Let’s put all these pieces together: we want to clone the object and save a reference to that new
object, we’ll add that reference to a list of Alonzo’s children, and finally launch the constructor in
this child object to initialize it. Here’s the final block definition that you should construct:

After you build this block, test it out to see if it works correctly. For example, drag out the “make
clone” block, fill in the parameter and execute it, like this:

Click on this, and an Alonzo should appear on the screen, and an additional Alonzo sprite will
appear in the sprites pane. Select this new sprite in the sprites pane, and check the “secret”
variable in the variables category (you can either check “secret” so that it is a watch variable, or
just click on the variable in the blocks palette to make it report its value). Does the secret have
the value 2? (It should!) Next, select the original Alonzo sprite in the sprites pane, and try “make
clone” again, but with different arguments (say x=2, y=2, and secret=4). You should see another
Alonzo, at another position, and if you select that Alonzo in the sprites pane you should see the
different secret value (4 in this case).

When you have completed this activity, and have experimented with this enough to understand
how things work, save it as “Lab8-Activity1”.

Activity 2: If you tested the “make clone” block from Activity 1 a few times, you should have
several Alonzo sprites now. We need a way to “clean up” all these extra sprites, to make it
easier to run several tests. Fortunately, we saved references to all these new sprites in the
“child alonzos” list, so we’ll just go through that list, deleting all these cloned Alonzos. The
easiest way to do this is to always work with the sprite at the front of the “child alonzos” list -
we’ll delete the sprite using the reference at the front of the list, and then we’ll delete the first
item in the list since we don’t need that reference any more. We repeat this for the entire list,
giving the following script, which can be build in the regular scripts pane for the parent Alonzo.
At the end, the child sprites will all be deleted, and the “child alonzos” list will be empty.
Important: make sure you’ve got the original Alonzo selected in the sprites pane before making

this script! If you make this in a child Alonzo, then this child will be deleted by its own script, and
then you will lose all of the work you just did! So be careful to create scripts only in the “parent
Alonzo”, and save often! Here’s the script you should build:

Once it is build, run it. Did all the child Alonzo’s get deleted? Hopefully the children were
deleted, and the original is still there. When you have this script build and tested, save you work
as Lab8-Activity2.

Activity 3: We want to set up two lines of Alonzo clones, with a random ordering of secret
identities in each row. What we want to do is create a list of secret identities (numbers 1 through
8) in random order. This is actually a good use of the “insert” block with the “Any” argument,
which puts a value in a random position. To create a randomly ordered list, we simply insert
values at “Any” position, and if we use the index iterator pattern to count through values to
insert. We will create a reporter block that builds a list and reports it, so that we can save the list
in a variable and use it for secret identities. Here’s the definition:

So we can call this block, and iterate over the randomly-ordered identities, using those when we
create a line of Alonzos. Examine the following script and understand what it does:

Notice the two loops - the outer loop iterates twice, once for each row of Alonzo’s that we
create. Within this first repeat loop, we create a random ordering of secret identities, and then
create 8 clones of Alonzo with the secret identity taken from the random permutation (note that
we add one, since the first costume is the basic Alonzo costume, not a secret identity). Build this
script and test it out. When you’ve got it working correctly, save this as Lab8-Activity3.

Activity 4: Now you’re on your own! This activity is entirely extra credit, but it will be good to
see how far you can get in completing the memory game. The main task is to handle what
happens when the player clicks on an Alonzo clone. We can uncover secret identities with a
script that looks like this:

Of course, that’s not what we want to do. We want to handle clicks in pairs, and hide or remove
sprites when there is a match. This can be done with some fairly short scripts, but they’re a little
tricky. Experiment and see what you can make work! Save your final version as Lab8-Activity4.

Discussion (Post-Lab Follow-up)
No post-lab reading this time...

Terminology
The following new words and phrases were used in this lab:

● attributes : variables that are associated with a specific object or sprite
● child sprite : a sprite that is created by cloning another sprite - in cloning, the original

sprite is known as the “parent sprite” and the new sprite is a “child sprite”
● constructor : a script that is run to initialize various attributes in a new sprite
● methods : scripts that are specific to a particular object or sprite, performing actions

● object - oriented programming : a style of program design that is oriented around defining
programmatic objects in terms of the attributes and methods (note: object-oriented
programming has many other aspects that are beyond the scope of this lab!)

● parent sprite : a sprite that creates another sprite by cloning - in cloning, the original
sprite is known as the “parent sprite” and the new sprite is a “child sprite”

Submission
In this lab, you should have saved the following files: Lab8-Activity1, Lab8-Activity2, Lab8-
Activity3, and Lab8-Activity4. Turn these in using whatever submission mechanism your school
has set up for you.

	Objectives
	Background (Pre-Lab Reading)
	Activities (In-Lab Work)
	Discussion (Post-Lab Follow-up)
	Terminology
	Submission

