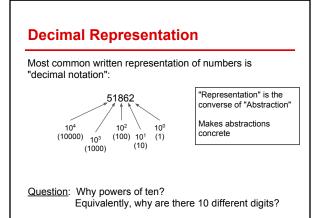
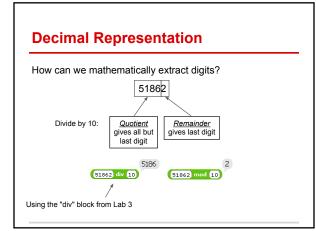

# **Data Representation**


Interpreting bits to give them meaning

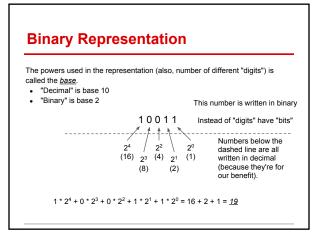

### Part 1: Numbers


Notes for CSC 100 - The Beauty and Joy of Computing The University of North Carolina at Greensboro

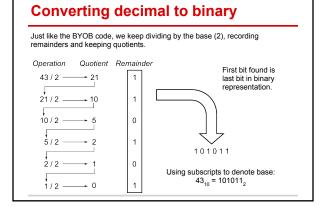




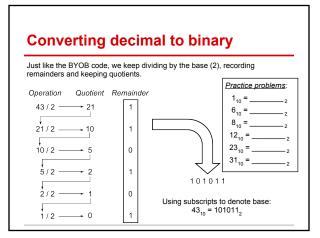




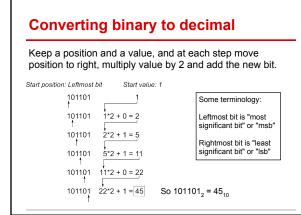


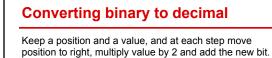

# <text>

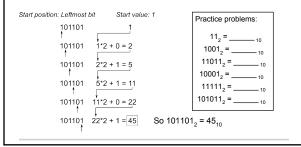








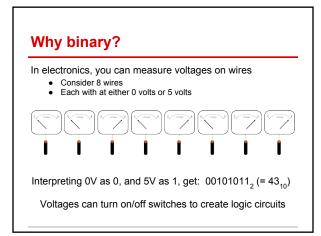












# Counting in binary without converting

Picture an odometer with only two values, 0 and 1

When any wheel goes from 1 to 0, turn the one to the left

| 0000 | = 0 <sub>10</sub> | 1000 | = 810              |
|------|-------------------|------|--------------------|
| 0001 | = 1 <sub>10</sub> | 1001 | = 9 <sub>10</sub>  |
| 0010 | = 2 <sub>10</sub> | 1010 | = 10 <sub>10</sub> |
| 0011 | = 3 <sub>10</sub> | 1011 | = 11 <sub>10</sub> |
| 0100 | = 4 <sub>10</sub> | 1100 | = 12 <sub>10</sub> |
| 0101 | = 5 <sub>10</sub> | 1101 | = 13 <sub>10</sub> |
| 0110 | = 6 <sub>10</sub> | 1110 | = 14 <sub>10</sub> |
| 0111 | = 7 <sub>10</sub> | 1111 | = 15 <sub>10</sub> |
|      |                   |      |                    |







# Hexadecimal - another useful base

Hexadecimal is base 16.

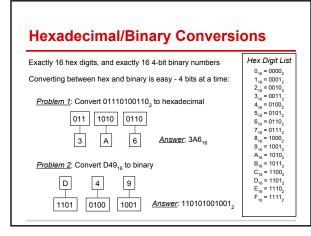
How do we get 16 different digits? Use letters!

Hexadecimal digits (or "hex digits" for short):

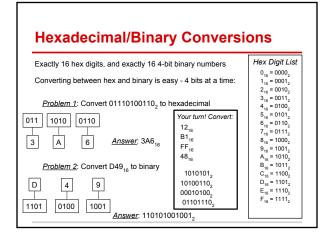
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

### Counting - now our odometer has 16 digits:

| 0 <sub>16</sub> (= 0 <sub>10</sub> ) | 6 <sub>16</sub> (= 6 <sub>10</sub> )  | C <sub>16</sub> (= 12 <sub>10</sub> )  | 12 <sub>16</sub> (= 18 <sub>10</sub> ) | ••• |
|--------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|-----|
| 1 <sub>16</sub> (= 1 <sub>10</sub> ) | 7 <sub>16</sub> (= 7 <sub>10</sub> )  | D <sub>16</sub> (= 13 <sub>10</sub> )  | 1316 (= 1910)                          |     |
| 2 <sub>16</sub> (= 2 <sub>10</sub> ) | 816 (= 810)                           | E <sub>16</sub> (= 14 <sub>10</sub> )  | 14 <sub>16</sub> (= 20 <sub>10</sub> ) |     |
| 3 <sub>16</sub> (= 3 <sub>10</sub> ) | 9 <sub>16</sub> (= 9 <sub>10</sub> )  | F <sub>16</sub> (= 15 <sub>10</sub> )  | 15 <sub>16</sub> (= 21 <sub>10</sub> ) |     |
| 4 <sub>16</sub> (= 4 <sub>10</sub> ) | A <sub>16</sub> (= 10 <sub>10</sub> ) | 10 <sub>16</sub> (= 16 <sub>10</sub> ) | 16 <sub>16</sub> (= 22 <sub>10</sub> ) |     |
| 5 <sub>16</sub> (= 5 <sub>10</sub> ) | B <sub>16</sub> (= 11 <sub>10</sub> ) | 11 <sub>16</sub> (= 17 <sub>10</sub> ) | 17 <sub>16</sub> (= 23 <sub>10</sub> ) |     |


# Hexadecimal/Decimal Conversions

| Conversion process is like binary, but base is 16                                                                                                                                                                                                                                                        | Hex Digit List                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Problem 1: Convert 423 <sub>10</sub> to hexadecimal:      423/16 = quotient 26, remainder 7 (=7 <sub>16</sub> )      26/16 = quotient 1, remainder 10 (=A <sub>16</sub> )      1/16 = quotient 0, remainder 1 (=1 <sub>16</sub> )      • Reading digits bottom-up: 423 <sub>10</sub> = 1A7 <sub>16</sub> | $\begin{array}{l} 0_{16}=0_{10}\\ 1_{16}=1_{10}\\ 2_{16}=2_{10}\\ 3_{16}=3_{10}\\ 4_{16}=4_{10}\\ 5_{16}=5_{10}\\ 6_{16}=6_{10}\\ 7_{16}=7_{10}\\ 8_{16}=8_{10} \end{array}$ |
| <u>Problem 2</u> : Convert 9C3 <sub>16</sub> to decimal:<br>Start with first digit, 9<br>9*16 + 12 = 156<br>156*16 + 3 = 2499<br>• Therefore, 9C3 <sub>16</sub> = 2499 <sub>10</sub>                                                                                                                     | $\begin{array}{c} 9_{16}^{7}=9_{10}^{7}\\ A_{16}=10_{10}\\ B_{16}=11_{10}\\ C_{16}=12_{10}\\ D_{16}=13_{10}\\ E_{16}=14_{10}\\ F_{16}=15_{10} \end{array}$                   |


# Hexadecimal/Decimal Conversions

| Conversion process is like binary, but bas                                                                                                                                                                                                                                                                                                                                                    | Hex Digit List                                                                                             |                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Problem 1:      Convert 423 <sub>10</sub> to hexadecimal:        423/16 = quotient 26, remainder 7 (=7 <sub>10</sub> )      26/16 = quotient 1, remainder 10 (=A <sub>16</sub> )        1/16 = quotient 0, remainder 1 (=1 <sub>16</sub> )      1/16 = quotient 0, remainder 1 (=1 <sub>16</sub> )        • Reading digits bottom-up: 423 <sub>10</sub> = 1A7 <sub>16</sub> 1A7 <sub>16</sub> |                                                                                                            | $\begin{array}{c} 0_{16} = 0_{10} \\ 1_{16} = 1_{10} \\ 2_{16} = 2_{10} \\ 3_{16} = 3_{10} \\ 4_{16} = 4_{10} \\ 5_{16} = 5_{10} \\ 6_{16} = 6_{10} \\ 7 \end{array}$              |
| Problem 2: Convert 9C3 <sub>16</sub> to decimal:        Start with first digit, 9        9*16 + 12 = 156        156*16 + 3 = 2499        • Therefore, 9C3 <sub>16</sub> = 2499 <sub>10</sub>                                                                                                                                                                                                  | Your turn!      Convert: $103_{10}$ 16 $247_{10}$ 16 $952_{10}$ 16 $3C_{16}$ 10 $39_{16}$ 10 $357_{16}$ 10 | $\begin{array}{l} 7_{16}=7_{10}\\ 8_{16}=8_{10}\\ 9_{16}=9_{10}\\ A_{16}=10_{10}\\ B_{16}=11_{10}\\ C_{16}=12_{10}\\ D_{16}=13_{10}\\ E_{16}=14_{10}\\ F_{16}=15_{10} \end{array}$ |











# Use of hexadecimal in file dumps

Binary is a very long format (8 bits per byte), but often data files only make sense as binary data. Hexadecimal is great for this - simple one-to-one correspondence with binary, and more compact.

| Sample | TILE  | aui | mp∵: |  |
|--------|-------|-----|------|--|
|        | 00000 | 00. | 0000 |  |

| ampio mo aa                                                  |      |      |      |      |      |                                                    |      |      |                  |
|--------------------------------------------------------------|------|------|------|------|------|----------------------------------------------------|------|------|------------------|
| 0000000:                                                     | ffd8 | ffel | 35fe | 4578 | 6966 | 0000                                               | 4949 | 2a00 | 5.ExifII*.       |
| 0000010:                                                     |      |      |      |      |      |                                                    |      |      |                  |
| 0000020:                                                     |      |      |      |      |      |                                                    |      |      |                  |
| 0000030:                                                     | 0200 | 1900 | 0000 | b800 | 0000 | 1201                                               | 0300 | 0100 |                  |
| 0000040:                                                     | 0000 | 0600 | 0000 | 1a01 | 0500 | 0100                                               | 0000 | d800 |                  |
| 0000050:                                                     |      |      |      |      |      |                                                    |      |      |                  |
| 0000060:                                                     | 0300 | 0100 | 0000 | 0200 | 0000 | 3201                                               | 0200 | 1400 |                  |
| 0000070:                                                     |      |      |      |      |      |                                                    |      |      |                  |
| 0000080:                                                     |      |      |      |      |      |                                                    |      |      | i                |
| 0000090:                                                     | 0400 | 0100 | 0000 | 2413 | 0000 | £213                                               | 0000 | 2020 | \$               |
| 00000a0:                                                     |      |      |      |      |      |                                                    |      |      |                  |
| 00000b0:                                                     |      |      |      |      |      |                                                    |      |      | .Ca              |
| 00000c0:                                                     | 6e6f | 6e00 | 4361 | 6e6f | 6e20 | 506f                                               | 7765 | 7253 | non.Canon PowerS |
| 00000d0:                                                     |      |      |      |      |      |                                                    |      |      | hot SX230 HS     |
| 00000e0:                                                     |      |      |      |      |      |                                                    |      |      |                  |
| 00000f0:                                                     |      |      |      |      |      |                                                    |      |      | 2011:07:14 1     |
| 0000100:                                                     |      |      |      |      |      |                                                    |      |      | 5:09:27.!        |
| 0000110:                                                     |      |      |      |      |      |                                                    |      |      |                  |
| 0000120:                                                     | 0000 | 2788 | 0300 | 0100 | 0000 | 6400                                               | 0000 | 3088 | 'd0.             |
| Position in file Actual binary data (written in hexadecimal) |      |      |      |      |      | The same data, showing<br>character representation |      |      |                  |



# Remember....

Don't get lost in the details and manipulations:

Any base is a representation of an abstract number

We are interested in working with the number, and computations are not "in a base" - the base is only useful for having it make sense to us or the computer

## **Practice!**

You should be able to convert from one base to another.

Lots of ways to practice:

- By hand: Pick a random number convert to binary and convert back - did you get the same value?
   This isn't foolproof: You could have made two mistakes!
- With a calculator: Many calculators (physical and software) do base conversion check your randomly selected conversions.
- With a web site: Several web sites provide says to practice
  o For example, see <a href="http://cs.iupui.edu/~aharris/230/binPractice.html">http://cs.iupui.edu/~aharris/230/binPractice.html</a>

# **Next: Other Representations**

Now we know all about representing numbers

But computers also deal with text, web pages, pictures, sound/music, video, ...

How does that work?