
Algorithms

Part 2: Time Complexity

Notes for CSC 100 - The Beauty and Joy of Computing
The University of North Carolina at Greensboro

Last Time We Saw...

Problems are defined by input/output relation, with no
reference to how they are solved (focus is on what)

Algorithms are well-defined computational procedures that
solve problems (focus is on how)

Input(s) Output

Problem specifier worries about
input and outputs

Implementer / algorithm designer worries
about the computational process

In BYOB

This is an over-simplification: Sometimes the user wants to know some
properties of the block implementation.

Problem Focus

With a well-chosen name,
that may define the problem

well enough for the user!

Algorithm Focus

Question: What kinds of properties?

Algorithm Characteristics

● Does the algorithm work correctly (does it solve
the problem)?

● Is the answer provided precise?

● How confident are you in the correctness of the
algorithm and implementation (simpler
algorithms are easier to verify)?

● How much memory does the algorithm require?

● How fast is the algorithm?

Algorithm Characteristics

● Does the algorithm work correctly (does it solve
the problem)?

● Is the answer provided precise?

● How confident are you in the correctness of the
algorithm and implementation (simpler
algorithms are easier to verify)?

● How much memory does the algorithm require?

● How fast is the algorithm?

Assume no problems
with correctness or
precision for now.

Memory is a problem
for some algorithms,
but not as common a
limiting factor as...

Time is usually the most interesting and limiting
characteristic, whether talking about running a
big computation for a week, or calculating a new
graphics frame in 1/30 of a second.

What is "time" for an Algorithm?

Time is time, right?

But...
● Does time depend on things other than the algorithm?

● If run many times (on the same input), is time always the same?

● If QuickSort runs in 20 seconds on my old IBM PC, and
SelectionSort runs in 0.5 seconds on my current computer, is
SelectionSort a faster algorithm?

● Can we give clock time without implementing the algorithm?

Correcting for vagueness of timing
Wall-clock times depend on:
● Speed of computer that it's run on
● What else is happening on the computer
● ... and a few other things we'll address later

But... these are not differences in algorithms!

Solution: Algorithms are sequences of steps, so count steps!

Question: What's a step?

BYOB blocks and "steps"

Which of these should not be treated as "one step"?

a)
b)
c)
d)
e)

Experimenting with timing BYOB scripts

Timer is available to help test things out
● Reset timer to start it at zero

● Save current timer value into a variable for "lap timer"

● Watch variable shows limited precision - for more use "say

● Tip: surround only what you're interested in timing with reset/set
blocks (not initializations)

Constant time
We say a script (or part of a script or block definition) takes constant time if it is
a constant (usually small) number of basic steps, regardless of input.

Question: Are all of these constant time?

What about loops?

The number repetitions depends on length of "values"
● So this is not constant time...

Constant time operations, repeated "length of input" times is linear time
 Mathematically: Constant time loop body is time "c"

Repeated "n" times where n is length of list
Total time is then c*n (that's a linear function!)

Constant time block

Constant time block

Constant time block

Constant time block

But we repeat!!!
"... takes constant
time if it is a constant
(usually small)
number of basic
steps, regardless of
input"

General list index iterator pattern

We know how many times it repeats, and all basic blocks are constant
time except perhaps our "do something..." block
● In general, if time for "do something..." block is T(n), then time for complete

script with loop is n*T(n)
● If "do something" is constant time, total time is c*n (linear)

● It "do something" is linear time, total time is c*n2 (quadratic)

Mystery operation!!!

On previous slide:
● Time was expressed as a function of input size
● Could write time as T(n) = c*n

In general:

Very important
"Big Idea"!!!

Two challenges

What's the time complexity?
What's the time complexity?

Another challenge
The following predicate tests whether a list has any duplicates:

Question: What's the time complexity?

Predicting Program Times - Linear
Basic idea: Given time complexity and sample time(s) can estimate time
on larger inputs

Linear time: When input size doubles, time doubles
When input size triples, time triples
When input size goes up by a factor of 10, so does time

Example: A linear time algorithm runs in 10 sec on input size 10,000
How long to run on input size 1,000,000?

Answer: 1,000,000 / 10,000 = 100 times larger input
Therefore 100 times larger time, or 10 * 100 = 1,000 sec
Or 1,000 / 60 = 16.667 minutes

Predicting Program Times - Quadratic
Basic idea: Given time complexity and sample time(s) can estimate time
on larger inputs

Quadratic time: When input size doubles (2x), time quadruples (4x)
Input size goes up by a factor of 10, time goes up 102=100 times
Input size goes up k times, time goes up k2 times

Example: A quadratic time algorithm runs in 10 sec on input size 10,000
 How long to run on input size 1,000,000?

Answer: 1,000,000 / 10,000 = 100 times larger input
Therefore 1002 = 10,000 times larger time, or 100,000 sec
Or 100,000 / 60 = 1666.7 minutes (or 27.8 hours)

Predicting Program Times - Your Turn
Joe and Mary have created programs to analyze crime statistics, where
the input is some data on each resident of a town
● Joe's algorithm is quadratic time
● Mary's algorithm is linear time
● Both algorithms take about 1 minute for a town of size 1000

Both would like to sell their program to the City of Greensboro (population
275,000)

Problem: Estimate how long each program would take to run for Greensboro

Faster than linear list operations

Think about how you find a word in a dictionary:
● From the Webster's web site: "Webster's Third New International

Dictionary, Unabridged, together with its 1993 Addenda Section, includes
some 470,000 entries."

● If you checked every possible entry to see if it was the one you wanted, it
would take way too long.

● How is a dictionary organized in order to make this easier?

Challenge: Describe precisely how to quickly look up a word.

Illustration for a list of students

Basic process:
● Look in the middle of the list

● If that's not the item you're looking for, you can rule
out half of the list (smaller or larger)

● Repeat this until you find it or run out of items

Problem: Where's Emeline? (Like "Where's Waldo?" but without the goofy hat)

How long does this take?
At beginning: Could be any of n items
After 1 step: Could be any of n/2 items
After 2 steps: Could be any of n/4 items
After 3 steps: Could be any of n/8 items
...
After k steps: Could be any of n/2k items

To get to one item, need n=2k - so k = log2n

This is called logarithmic time, and gives very fast algorithms!

n log2n

1000 10

1,000,000 20

1,000,000,000 30

While you're not responsible
for knowing or being able to do
this derivation, you do need to
know about binary search and
logarithmic time.

This analysis doesn't require
anything beyond high school
algebra to understand - so try
to understand it!

So can find one item out of a
billion in just 30 comparisons!!!

Something worse...

Problem: I have 60 items, each with a value,
and want to find a subset with total value as
close to some target T as possible.

(The Price is Right on steroids...)

Algorithm: List all possible subsets of items
Add up total value of each subset
Find which one is closest

Question: If I have n items, how many subsets of n items are there?

Answer: There are 2n subsets - this is exponential time (and very bad!)

Graphically comparing time complexities

Exponential

Quadratic

Linear

Logarithmic

1000 seconds (about 15 minutes), at
1 billion ops/second

Note the log-log scale on this graph.
Max size for exponential time is around 40.

Comparing with numbers
Different time complexities, by the numbers...

Time in seconds at
1 billion ops/sec

Largest problem in
1 min at 1 billion

ops/sec
n=1,000 n=1,000,000

log2n 0.00000001 0.00000002 Huge*

n 0.000001 0.001 60,000,000,000

n2 0.001 1000 244,949

2n 10292 10301029 35

* Huge means a problem far larger than the number of atoms in the universe

There is a lot more to this than what we have covered - but this gives a
pretty accurate picture of basic algorithm time complexity!

Summary
● Algorithm "time complexity" is in basic steps

● Common complexities, from fastest to slowest are logarithmic,
linear, quadratic, and exponential
○ A simple loop with constant time operations repeated is linear time
○ A loop containing a linear time loop is quadratic
○ A loop halving the problem size every iteration is logarithmic time
○ A program considering all subsets is exponential time

● Speed depends on algorithm time complexity
○ Logarithmic time is fantastic
○ Linear time is very good
○ Quadratic time is OK
○ Exponential time is awful

● Given time complexity and one actual time, can estimate time for
larger inputs

