Algorithms

Part 2: Time Complexity

Notes for CSC 100 - The Beauty and Joy of Computing
The University of North Carolina at Greensboro

Last Time We Saw...

Problems are defined by input/output relation, with no
reference to how they are solved (focus is on what)

Algorithms are well-defined computational procedures that
solve problems (focus is on how)

Output

=

e

Problem specifier worries about
input and outputs

Implementer / algorithm designer worries
about the computational process

In BYOB

Problem Focus

With a well-chosen name,
that may define the problem
well enough for the user!

Algorithm Focus

GCD of ‘px’ ana pY

P Y o)

@y
eat sCourter | 1o)
]

jides evenly into pX and pY.

This is an over-simplification: Sometimes the user wants to know some
properties of the block implementation.

Question: What kinds of properties?

Algorithm Characteristics

e Does the algorithm work correctly (does it solve
the problem)?

e s the answer provided precise?

e How confident are you in the correctness of the
algorithm and implementation (simpler
algorithms are easier to verify)?

e How much memory does the algorithm require?

e How fast is the algorithm?

Algorithm Characteristics

.
d Assume no problems
with correctness or
] precision for now.
° Memory is a problem
} for some algorithms,

. . but not as common a

e How fast is the algorithm? limiting factor as...

Time is usually the most interesting and limiting
characteristic, whether talking about running a

big for a week, or ing a new
graphics frame in 1/30 of a second.

What is "time" for an Algorithm?

Time is time, right?

But...
e Does time depend on things other than the algorithm?

e If run many times (on the same input), is time always the same?

e If QuickSort runs in 20 seconds on my old IBM PC, and
SelectionSort runs in 0.5 seconds on my current computer, is
SelectionSort a faster algorithm?

e Can we give clock time without implementing the algorithm?

Correcting for vagueness of timing

Wall-clock times depend on:

e Speed of computer that it's run on
e What else is happening on the computer
e ... and a few other things we'll address later

But... these are not differences in algorithms!

Solution: Algorithms are sequences of steps, so count steps!

Question: What's a step?

BYOB blocks and "steps"

Which of these should not be treated as "one step"?

a)
b)
c)
d) gz
e) @

Experimenting with timing BYOB scripts

Timer is available to help test things out
e Reset timer to start it at zero
e Save current timer value into a variable for "lap timer"

oot [endtine 10, timer
e Watch variable shows limited precision - for more use "say

e Tip: surrosng only what you're interested in timing with reset/set
blocks (not initializations)

Constant time

We say a script (or part of a script or block definition) takes constant time if it is
a constant (usually small) number of basic steps, regardless of input.

Question: Are all of these constant time?

E——

e ————————————————
P e oo Y|
(9oenomt 11 pDenom2) /
T~ @ e B 60D of (TIIETY and (I00D),

What about loops?

——————
sIndexsSum

serit varisbles Constant time block

¥ Constant time block

Constant time block

\ "... takes constant
But we repeat!!! time if it is a constant

(usually small)

The number repetitions depends on length of "values" number of basic

o . steps, regardless of
e So this is not constant time... input”

Constant time operations, repeated "length of input" times is linear time

Mathematically: Constant time loop body is time "c"
Repeated "n" times where n is length of list

Total time is then c*n (that's a linear function!)

General list index iterator pattern

On previous slide: Very important

e Could write time as T(n) = ¢*n Big Idea™!

In general:

<«—— Mystery operation!!!
change <index b

=
We know how many times it repeats, and all basic blocks are constant
time except perhaps our "do something..." block
e In general, if time for "do something..." block is T(n), then time for complete
script with loop is n*T(n)
e If "do something" is constant time, total time is c*n (linear)

e It"do something" is linear time, total time is c*n? (quadratic)

Two challenges

What's the time
What's the time complexity?
B
ED e —

lenath of pUist - 0)

set [M3XP05 | to max pos in first ‘sindex of /pList

item ‘sIndex’ of pList >
i
item sAnswer of ‘pList

swap positions ‘maxPos) and ‘sIndex’ of (pList

set shnver | 1o CREED) change sindex | by @)
y =

Another challenge

The following predicate tests whether a list has any duplicates:

pList has duplicates

script variables sIndext”sindex2

length of pList -)

set 5Index2 |to " sindext +)

PETRY lenoth of (plist - sindext

item (sIndext of (pList =

(e (S1ndEAD of (pList
report L41D|
change sindex2 | by €)
change. sindext | by @
_faise]

Question: What's the time complexity?

Predicting Program Times - Linear

Basic idea: Given time complexity and sample time(s) can estimate time
on larger inputs

Linear time: When input size doubles, time doubles
When input size triples, time triples
When input size goes up by a factor of 10, so does time

Example: A linear time algorithm runs in 10 sec on input size 10,000
How long to run on input size 1,000,000?

Answer: 1,000,000 / 10,000 = 100 times larger input
Therefore 100 times larger time, or 10 * 100 = 1,000 sec
Or 1,000/ 60 = 16.667 minutes

Predicting Program Times - Quadratic

Basic idea: Given time complexity and sample time(s) can estimate time
on larger inputs

Quadratic time: When input size doubles (2x), time quadruples (4x)
Input size goes up by a factor of 10, time goes up 10?=100 times
Input size goes up k times, time goes up k? times

Example: A quadratic time algorithm runs in 10 sec on input size 10,000
How long to run on input size 1,000,000?

Answer: 1,000,000 / 10,000 = 100 times larger input
Therefore 1002 = 10,000 times larger time, or 100,000 sec
Or 100,000 / 60 = 1666.7 minutes (or 27.8 hours)

Predicting Program Times - Your Turn

Joe and Mary have created programs to analyze crime statistics, where
the input is some data on each resident of a town

e Joe's algorithm is quadratic time

e Mary's algorithm is linear time

e Both algorithms take about 1 minute for a town of size 1000

Both would like to sell their program to the City of Greensboro (population
275,000)

| Problem: Estimate how long each program would take to run for Greensboro

Faster than linear list operations

Think about how you find a word in a dictionary:
e From the Webster's web site: "Webster's Third New International
Dictionary, Unabridged, together with its 1993 Addenda Section, includes
some 470.000 entries."

e If you checked every possible entry to see if it was the one you wanted, it
would take way too long.

e How is a dictionary organized in order to make this easier?

Challenge: Describe precisely how to quickly look up a word.

lllustration for a list of students

Problem: Where's Emeline? (Like "Where's Waldo?" but without the goofy hat)

Arturo Arturo

Chad Chad

Christian Christian

Damion Damion

Emeline Emeline |::> Emeline |:> [Emeline]
Jaclyn |::> Jaclyn Jaclyn

Janicia Janicia Janicia

Johnny

Jordan

Levy Basic process:

Mark o Look in the middle of the list

Michael

Patrick e |f that's not the item you're looking for, you can rule
Sean out half of the list (smaller or larger)

Symone e Repeat this until you find it or run out of items

How long does this take?

Al inning: I ny of n item

{ beg g Could be any o t,e S While you're not responsible
After 1 step: Could be any of n/2 items for knowing or being able to do
After 2 steps: Could be any of n/4 items this derivation, you do need to

After 3 steps: Could be any of n/8 items know about binary search and
logarithmic time.

After k steps: Could be any of n/2 items This analysis doesn't require

anything beyond high school

algebra to understand - so try
to understand it!

To get to one item, need n=2-so k = log,n

This is called logarithmic time, and gives very fast algorithms!

n log,n
1000 10
1,000,000 20
So can find one item out of a
1,000,000,000 30 <« billion in just 30 comparisons!!!

Something worse...

Problem: | have 60 items, each with a value,
and want to find a subset with total value as
close to some target T as possible.

(The Price is Right on steroids...)

Algorithm: List all possible subsets of items
Add up total value of each subset
Find which one is closest
Question: If | have n items, how many subsets of n items are there?

Answer: There are 2" subsets - this is exponential time (and very bad!)

Graphically comparing time complexities

1000 seconds (about 15 minutes), at

Exponential 1 billion ops/second
Quadratic

1000

Ter12 . .

oL ogath)

sl |

10405

Steps

10000 / 1

— . L L . . L L L L L
P ;\m o 1 100 10000 10%06 1es08 ferlD fesi2

Input Size
Logarithmic

Note the log-log scale on this graph.

Max size for exponential time is around 40.

Comparing with numbers

Different time complexities, by the numbers...

Time in seconds at Largest problem in
1 billion ops/sec 1 min at 1 billion
opsisec
n=1,000 n=1,000,000
log,n 0.00000001 0.00000002 Huge*

n 0.000001 0.001 60,000,000,000

" 0.001 1000 244,949

on 1022 1001029 35

* Huge means a problem far larger than the number of atoms in the universe

There is a lot more to this than what we have covered - but this gives a
pretty accurate picture of basic algorithm time complexity!

Summary

e Algorithm "time complexity" is in basic steps

e Common complexities, from fastest to slowest are logarithmic,
linear, quadratic, and exponential
o A simple loop with constant time operations repeated is linear time
o Aloop containing a linear time loop is quadratic
o Aloop halving the problem size every iteration is logarithmic time
o A program considering all subsets is exponential time

e Speed depends on algorithm time complexity
o Logarithmic time is fantastic
o Linear time is very good
o Quadratic time is OK
o Exponential time is awful

e Given time complexity and one actual time, can estimate time for
larger inputs

