
Concurrency

Notes for CSC 100 - The Beauty and Joy of Computing
The University of North Carolina at Greensboro

What is concurrency?

From Wikipedia page Concurrency (computer science):

In computer science, concurrency is a property of systems
in which several computations are executing
simultaneously, and potentially interacting with each other.
The computations may be executing on multiple cores in
the same chip, preemptively time-shared threads on the
same processor, or executed on physically separated
processors.

Traditional computer model
One Central Processing Unit (CPU)

Basic Property: Can do one task (or thread) at a time

What if want to do multiple tasks?
● Web browser running
● Movie player running
● MS Word running to take notes
● Checking for instant messages
●

CPU

Memory

Question: How do we do all these things simultaneously?

Traditional computer model
One Central Processing Unit (CPU)

Basic Property: Can do one task at a time
CPU

Memory

Answer: Time-Division Multiplexing

Switch back and forth so quickly that it looks like
things are happening simultaneously.

If that's "traditional", what's current?
What are some common CPUs on the market?

From newegg.com, Oct 2, 2012

If that's "traditional", what's current?
What are some common CPUs on the market?

From newegg.com, Oct 2, 2012

Question: What do the circled parts actually mean?

Multicore model
Just like having multiple independent CPUs sharing a common memory

CPU CPU CPU CPU

Memory

Now multiple tasks can run at the same time!
Can still do time-division multiplexing - might run dozens of threads
concurrently

Clearly multicore is the "new normal" - why?

All in the same
processor package

Moore's Law
Prediction: Transistor count per chip doubles every two years

Due to Gordon Moore
(Intel co-founder)
● Prediction from 1965
● Has stayed

remarkably accurate

Graph from Wikipedia

Many versions of Moore's
Law, dealing with
● Transistor count (this is

the real Moore's Law)
● Processing speed
● Storage capacity

Different CPU characteristics

Clock speed and
single-thread
performance
have flattened
out!

Graph from Dan Garcia's Lecture Notes (UC Berkeley)

Different CPU characteristics

More transistors -
even if can't make
faster, we can
duplicate cores
with all these
extra transistors!

Graph from Dan Garcia's Lecture Notes (UC Berkeley)

Other kinds of concurrency

Multiple processors (even multi-core) in a single computer

Multiple computers in a rack with high speed communication (cluster
computing)

Multiple computers or clusters geographically separated (grid computing)

And even more possible configurations...

Beyond this class - just be aware that there are more possibilities!

Parallel algorithms
Previous examples: Running several independent tasks (solving several
independent problems) simultaneously.

Parallel algorithms make use of multiple processors
working on a single problem.

Ideally, with P processors you'd like to solve problems P times faster, but:
● Some tasks are inherently sequential, and must be done one step at a time

(e.g., maze searching - not everything that seems inherently sequential is
though!)

● Some tasks are embarrassingly parallel: obviously independent sub-tasks
with little inter-task communication (e.g., a lot of image processing,
graphics rendering, brute force crypto attacks, ...

● Most tasks are somewhere in between these two extremes (but might have
some embarrassingly parallel components!)

An example - a big sum
Think "big" even if only 20 numbers here - imagine a million numbers

7 2 3 1 5 4 3 2 5 8 6 8 3 5 3 2 2 4 2 1

Sequential algorithm: One thread adds all numbers in 20 steps

= 76

7 2 3 1 5 4 3 2 5 8 6 8 3 5 3 2 2 4 2 1

= 18 = 22 = 25 = 11

Parallel: Four threads simultaneously add up 5 numbers each in 5 steps
Then on thread adds 4 partial results (18+22+25+11=76) in 4 steps

Total time: 9 steps (over twice as fast)

What to notice...
This algorithm has a "parallel part" and a "sequential part"

More processors makes parallel part faster, but not sequential part!

Note: Sometimes "Sequential Time" can increase as number of processors
increases, since there's more to coordinate. In last example:
● With 4 processors: sequential time was 4 steps because 4 partial results
● 100 processors really speeds up parallel time, but gives 100 partial results.

Dangers - Race Conditions
Race conditions occur when multiple threads are working on the same
data, and the interleaving of individual steps causes problems.

A (only slightly contrived) BYOB example:

What if BYOB didn't allow you to add a specific item to a list, but only
allowed you to add space and then fill in that space using "replace" (this
is actually what happens behind the scenes!). Then you might want to
define something like:

Dangers - Race Conditions - cont'd
Next: You use your block in a game with Alonzo and the dragon. Each
character "registers" with a characters list, as follows:

One of Alonzo's scripts One of the Dragon's scripts

After we click the green flag to start the game, both characters do the
add, and this is the resulting list:

Question: Can you explain why isn't Alonzo in the list?

Live Demo!

Dangers - Race Conditions - cont'd
Consider what Alonzo does, step by step...

Dangers - Race Conditions - cont'd
Consider what Alonzo does, step by step...

Then the dragon starts a fraction of a
second after Alonzo...

Oh
No!

Dangers - Race Conditions - Solutions?

Can we rearrange things to solve the problem?

What's good: setting sNewIndex is closer to its use in "replace item..."

But: This does not fix the problem! "Closer" makes it harder to have a race
condition, but it's still possible - and if it's possible to fail, it will fail at the worst
possible time (see Murphy's Law).

Real solution: Use locks to give a thread temporary exclusive access to data
(like the character list) - all other threads must wait.

Dangers - Deadlock

Deadlock is when threads hold
resources that other threads need, but
don't have everything they need to
make progress.

Image from CS Unplugged project

Example: A banking program where to transfer money from account A to
account B, records for A and B are locked to avoid race conditions before
updating balances.

Teller 2 starts transfer B->A

Locks B's records

Waiting on A's lock to be
released... (held by Teller 1)

Teller 1 starts transfer A->B

Locks A's records

Waiting on B's lock to be
released... (held by Teller 2)

Start at
same time

