Reductions, Self-Similarity, and Recursion

Relations between problems

Notes for CSC 100 - The Beauty and Joy of Computing
The University of North Carolina at Greensboro

Getting to places from my house...

Now | buy a new house!




Get anywhere by first going to old house

&

Things to notice...

What I want to do...

| can go anywhere from my new house by

1. Going to my old house
2. Going to my destination from there

What I know how to do...

Things to notice...

What | want to do...

| can go anywhere from my new house by
1. Going to my old house

2. Going to my destination from there What | know how fo do..

Terminology: | have reduced the problem of traveling from my new house to
the problem of traveling from my old house.

Important points:
« Solution is easy to produce (often easier than direct solution)
o Solution is easy and compact to describe
« Solution may not be the most efficient to execute




Things to notice...

What | want to do...

| can go anywhere from my new house by
1. Going to my old house

2. Going to my destination from there What | know how fo do..

Question: Is a reduction a property of problems or algorithms?

Things to notice...

Problem

| can go anywhere from my new house by

1. Going to my old house
2. Going to my destination from there

\ Problem

Reductions are between problems
e The reduction operation is an algorithm
e Abstraction: We don't care how the "known algorithm" works!

The Basics

A reduction is using the solution of one problem (problem A) to solve
another problem (problem B).

We say "problem B is reduced to problem A".

Reductions are a fundamental "big idea" in computer science
e Lots of types of reductions - you could spend a lifetime studying this!

e Our reductions use a small amount of work in addition to a constant
number of calls to problem A.
o As aresult, can say problem B is not much harder than problem A
o True even if we don't know the most efficient way to solve problem Al




An example from

Lab 4

To find least common multiple (LCM):

PR ox)
B

change sTest |by @

An example from Lab 4

To find least common multiple (LCM):

=

e varabie: e
PGS ox)

et sTest
SRS

But if you already have

YRl
P and ‘pY

B e @ =)

D

Lem2 of

What have we done? We have reduced the problem of computing LCM

to the problem of computing GCi

the problem of computing LCM
D.

An example from Lab 4

To find least common multiple (LCM):

Not a great

But if you already have GCD
|
(m’mnn:o*mmdm’

What have we done? We have reduced the problem of computing LCM
to the problem of computing GCD.

| S0: LCM is no harder computationally than

GCD. And remember... Euler's algorithm is a
very efficient GCD algorithm!




Similarity and Self-Similarity

Reducing LCM to GCD identifies similarities between the
two problems.

Many problems are structured so that solutions are "self-
similar" - large solutions contain solutions to smaller
versions of the same problem!

Example: Recall sum of list items as parallel algorithm -
each thread solved a smaller version of the same problem!

An algorithm can solve a large problem by breaking it down
to smaller versions of the same problem - this is called
recursion.

Example: Adding up a list

Sum of 20 items ( = 76)

I\
r 1

[72fe] [o]¢]e]2 = e]o]oo o o 2 2]« 2 "]
L

|
Sum of 19 items ( = 75)

76

Example: Adding up a list

Sum of 20 items (= 76)

I\
[ 1

[7zfe[+[o]«]o]2]=]e]e]e]o o 2 2 2] 2]"]
L

|
Sum of 19 items (= 75)

76

o @ T




Breaking it down

D

- Base case: Handling smallest case directly

Recursive case: Solving a smaller
-— -
version of the same problem.

sat 25Ubproblam |to sumof first {phum - @) of (st

s CEERAEE TS

gem————

\ Constant amount of work to use answer
from subproblem to compute answer to

overall problem.

Breaking it down

Workhorse Function

- Base case: Handling smallest case directly

. e
p——
set [sSubproblem | to. sum of frst { phum = ) of (piist
o AT

Recursive case: Solving a smaller
-— :
version of the same problem.

Driver Eunction \ Constant amount of work to use answer
from subproblem to compute answer to
overall problem.

e of et (B R Bt o (LR

\ Driver function: sets up first call to recursion

Another example: Sorting

"Selection sort" from algorithms lab:

——v———
script variables ‘sIndex " sMaxPos

et sindex |to length of /plist
pust - )

length of

swap positions (zMaxPas) and (sindex of (plist

change sindex by @)




Another example: Sorting

"Selection sort" from algorithms lab:
Recursive version:

set 2Index_[to length of (plist

Base case: One item - nothing to do!
Setting up recursion: Swap max item to last position
Recursion: Sort all the rest

Summary

Finding relations between problems can simplify solutions:

e Sometimes relations between different problems (reductions)
e Sometimes relation to smaller version of the same problem
(recursion)

What you should know:

e Recognize reductions and recursion
e Understand the basic principles

We will explore this more in this week's lab!




