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Relations between problems
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Getting to places from my house...

Now | buy a new house!




Get anywhere by first going to old house

&

Things to notice...

What I want to do...

| can go anywhere from my new house by

1. Going to my old house
2. Going to my destination from there

What I know how to do...

Things to notice...

What | want to do...

| can go anywhere from my new house by
1. Going to my old house

2. Going to my destination from there What | know how fo do..

Terminology: | have reduced the problem of traveling from my new house to
the problem of traveling from my old house.

Important points:
« Solution is easy to produce (often easier than direct solution)
o Solution is easy and compact to describe
« Solution may not be the most efficient to execute




Things to notice...

What | want to do...

| can go anywhere from my new house by
1. Going to my old house

2. Going to my destination from there What | know how fo do..

Question: Is a reduction a property of problems or algorithms?

Things to notice...

Problem

| can go anywhere from my new house by

1. Going to my old house
2. Going to my destination from there

\ Problem

Reductions are between problems
e The reduction operation is an algorithm
e Abstraction: We don't care how the "known algorithm" works!

The Basics

A reduction is using the solution of one problem (problem A) to solve
another problem (problem B).

We say "problem B is reduced to problem A".

Reductions are a fundamental "big idea" in computer science
e Lots of types of reductions - you could spend a lifetime studying this!

e Our reductions use a small amount of work in addition to a constant
number of calls to problem A.
o As aresult, can say problem B is not much harder than problem A
o True even if we don't know the most efficient way to solve problem Al




An example from

Lab 4

To find least common multiple (LCM):
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What have we done? We have reduced the problem of computing LCM

to the problem of computing GCi

the problem of computing LCM
D.

An example from Lab 4

To find least common multiple (LCM):

Not a great

But if you already have GCD
|
(m’mnn:o*mmdm’

What have we done? We have reduced the problem of computing LCM
to the problem of computing GCD.

| S0: LCM is no harder computationally than

GCD. And remember... Euler's algorithm is a
very efficient GCD algorithm!




Similarity and Self-Similarity

Reducing LCM to GCD identifies similarities between the
two problems.

Many problems are structured so that solutions are "self-
similar" - large solutions contain solutions to smaller
versions of the same problem!

Example: Recall sum of list items as parallel algorithm -
each thread solved a smaller version of the same problem!

An algorithm can solve a large problem by breaking it down
to smaller versions of the same problem - this is called
recursion.

Example: Adding up a list

Sum of 20 items ( = 76)
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Example: Adding up a list

Sum of 20 items (= 76)
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Breaking it down

D

- Base case: Handling smallest case directly

Recursive case: Solving a smaller
-— -
version of the same problem.

sat 25Ubproblam |to sumof first {phum - @) of (st
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\ Constant amount of work to use answer
from subproblem to compute answer to

overall problem.

Breaking it down

Workhorse Function

- Base case: Handling smallest case directly
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Recursive case: Solving a smaller
-— :
version of the same problem.

Driver Eunction \ Constant amount of work to use answer
from subproblem to compute answer to
overall problem.
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\ Driver function: sets up first call to recursion

Another example: Sorting

"Selection sort" from algorithms lab:
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Another example: Sorting

"Selection sort" from algorithms lab:
Recursive version:

set 2Index_[to length of (plist

Base case: One item - nothing to do!
Setting up recursion: Swap max item to last position
Recursion: Sort all the rest

Summary

Finding relations between problems can simplify solutions:

e Sometimes relations between different problems (reductions)
e Sometimes relation to smaller version of the same problem
(recursion)

What you should know:

e Recognize reductions and recursion
e Understand the basic principles

We will explore this more in this week's lab!




