
The Beauty and Joy of Computing
Lab Exercise 1: Introduction to Scratch/BYOB - Animations and Communication

Objectives
By completing this lab exercise, you should learn to

● understand the basic user interface components of BYOB;
● use BYOB, open, edit, and run a project;
● understand the various components of the BYOB system and interface;
● work with sprites to create basic animations;
● coordinate actions of sprites through broadcast messages.

Background (Pre-Lab Reading)
Programming exercises in this class will be done using BYOB, an extension to the Scratch
programming environment. Scratch was developed by the Lifelong Kindergarten Group at MIT,
and is a designed to be an easy-to-use environment for creating animations and simple games
(see http :// scratch . mit . edu /). Scratch avoids bogging students down with textual syntax
concerns by graphically representing programming constructs with blocks, similar to puzzle
pieces, that can be snapped together to make more complex actions. While Scratch was
designed to be usable by middle school and younger students, it has many features that make it
a nice introduction to programming concepts, even for older students.

The BYOB (“Build Your Own Blocks” - see http :// byob . berkeley . edu) project extends Scratch by
adding some advanced features, including the ability to create your own programming puzzle
pieces, or blocks, which is the source of the name. This capability allows a programmer to do
the kind of top-down design that is vital to modern programming, and allows the use of recursion
and other powerful programming techniques which we will see later in the course. BYOB was
created at the University of California at Berkeley, specifically for the Berkeley class that is the
model and inspiration for our class.

BYOB and Scratch are both free to download, install, and use. The most recent version of
BYOB (renamed to “Snap!”) runs in the browser so doesn’t require any installation; however, as
nice as that is, there are some things missing from the latest versions that we make use of in
this course, so we use an older version (version 3.1.1 of BYOB). For more information on
BYOB, see the web site at http :// byob . berkeley . edu . The specific lab exercises are described in
general terms, making little or no assumptions about whether you are doing these on your own
computer or in a school computer lab. If you are working in a school computer lab, your
instructor may provide another document that provides instructions specific to your school.

Lab Exercises for “The Beauty and Joy of Computing”
Copyright © 2012, 2013 by Stephen R. Tate - Creative Commons License
See http :// www . uncg . edu / cmp / faculty / srtate / csc 100 labs for more information

http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://byob.berkeley.edu/
http://byob.berkeley.edu/
http://byob.berkeley.edu/
http://byob.berkeley.edu/
http://byob.berkeley.edu/
http://byob.berkeley.edu/
http://byob.berkeley.edu/
http://byob.berkeley.edu/
http://byob.berkeley.edu/
http://byob.berkeley.edu/
http://byob.berkeley.edu/
http://byob.berkeley.edu/
http://byob.berkeley.edu/
http://byob.berkeley.edu/
http://scratch.mit.edu/).
http://scratch.mit.edu/).
http://scratch.mit.edu/).
http://scratch.mit.edu/).
http://scratch.mit.edu/).
http://scratch.mit.edu/).
http://scratch.mit.edu/).
http://scratch.mit.edu/).
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs

Overview of BYOB

BYOB is a graphical programming environment, and when it starts the interface has 5 distinct
areas which are called panes (as in “panes in a window” - get it?), labeled in the following
picture of the BYOB interface:

The “Stage” is the area in the upper right corner of the BYOB window, and this is where your
program or animation plays out. Once you write a program, you can use the controls above the
stage to start the animation (by clicking the green flag), pause or stop the animation.

Stretched out across the top of the BYOB window is a menu bar, which is similar to the menu
bar in most applications that you are probably familiar with: it has a File menu, Edit menu, etc.
There are also some buttons off on the far right that are important: the three buttons above the
right side of the stage can be used to change the size of the stage. By default the stage is
“medium sized” (as shown in the picture above), but can be made small (the first button), or full-
screen (the last button). If you experiment with this and try full-screen mode, use the ESC key to
exit full-screen mode.

In the picture above, you see a character drawn on the stage - this is “Alonzo,” the BYOB
mascot. Characters like this can be controlled by programs you write in BYOB, and in animation
and game software (not just BYOB) such characters are called “sprites.” A sprite is an object
that can be defined to set how it looks (called the sprite’s “costume”), sounds it can make, and
actions (or “scripts”) that control its behavior. When you are creating a program in BYOB, you
work with one sprite at a time, selected using the “sprites pane” in the lower right corner of the

Lab Exercises for “The Beauty and Joy of Computing”
Copyright © 2012, 2013 by Stephen R. Tate - Creative Commons License
See http :// www . uncg . edu / cmp / faculty / srtate / csc 100 labs for more information

http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs

BYOB window. In our example picture, there are two items in the sprites pane: Alonzo (named
“Sprite1”) and the Stage. While the Stage isn’t exactly a sprite, it does have some behaviors that
can be controlled, such as setting a background image, playing music, etc. The three buttons at
the top of the sprites pane provide three different ways to create a new sprite: the first button
(the star with the paintbrush) allows you to draw whatever picture you want; the second button
(the star with the folder) allows you to load a sprite picture from a file; the third button (the star
with the question mark) gives you a random picture. If you forget what these do, you can “hover”
the mouse pointer over any button and it will give you a description of what the button does.

The middle and largest area of the BYOB window, called the “sprite info pane,” shows
information on the sprite that is currently selected in the sprites pane - notice the three tabs in
the sprite info pane identifying the three components of the current sprite: “Scripts” controls the
behavior of the sprite (this is for programming), “Costumes” are pictures that show all the
different looks or poses of the sprite, and “Sounds” are audio clips that can be played from
sprite scripts. You will most commonly work in the Scripts tab of the sprite info pane, and for
convenience we will simply call that the “scripts area.”

The only pane we haven’t described yet is the interesting looking “blocks palette” on the left
side of the window. This pane contains a collection of puzzle pieces (called blocks) that you
use to create scripts - we’ll look at how this works next.

The Blocks Palette and Creating Scripts

All of the blocks that can be used to control the actions of your sprites are located in the blocks
palette. Some blocks can cause the sprite to do something (move, say something, change
costume, etc.), so we call these action blocks - when one of these blocks performs its action,
we say that the block executes its action, and we refer to this happening as the block’s
execution. Here’s an example of an action block:

When this block executes, the sprite will move 10 spaces in the direction that it is facing (we’ll
talk about what a “space” below). To make this block part of the sprite’s program, you simply
drag it out from the blocks palette and drop it in the script area. To execute the block, you can
click on the block either in the blocks palette or in the script area. To create more complex
actions, multiple blocks can be drug out to the script area and connected together - this will
make more sense when you do it in the activities. When we have multiple blocks together in a
script, executing the scripted sequence is referred to as running the script.

Most blocks have parts that can be changed, called parameters - for example, the “move...”
block above has a single parameter, which controls how far the sprite moves. The value that is
sent to the block (like the number 10) is called an argument. You can type a different argument
value into this block to make the sprite move by 20, 40, or however many spaces you want. You
can even have another part of your program provide the argument, so that the sprite doesn’t
move the same distance every time this block is executed. The difference between the terms
“parameter” and “argument” is a little subtle - if you don’t understand the difference right now,

Lab Exercises for “The Beauty and Joy of Computing”
Copyright © 2012, 2013 by Stephen R. Tate - Creative Commons License
See http :// www . uncg . edu / cmp / faculty / srtate / csc 100 labs for more information

http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs

don’t worry about it - we’ll get back to it later in the class when defining our own blocks, and it
should make more sense in that context.

In addition to action blocks, there are blocks blocks control the execution of other blocks, so we
call these control blocks. For example, a control block can make it so that our sprite moves
when another sprite collides with it.

There are a lot of different actions that can be programmed in a sprite, so in order to organize
things in a reasonable way the blocks are divided into eight different types of blocks, or
categories, indicated by the different colored blocks at the top of the block palette. These
categories are motion, looks, sound, pen, control, sensing, operators, and variables. The
example block above is a “motion” block, and is colored blue as a visual indication of the type of
block.

Sprite Positions and Stage Coordinates

In the previous example, we used a block that moved the sprite 10 “spaces” - what’s a “space?”
Positions on the stage are given using x,y coordinates, just like x/y-axis graphs that you’ve
worked with in math classes, and the correct name for each space is a pixel (short for “picture
element”). The center of the stage is location (0,0), and positive x values go to the right, and
positive y values go up. Here’s what the Scratch Wiki documentation says about the size of the
stage:

The screen is a 480x360 rectangle, such that: the X position can range from 240 to
-240, where 240 is the rightmost a sprite can be and -240 is the leftmost, and the Y
position can range from 180 to -180, where 180 is the highest it can be and -180 is the
lowest it can be.

Unfortunately, this statement isn’t quite right - it’s close enough for almost everything you’d want
to do, but every one of those numbers is slightly wrong. More about this in the “Self-Assessment
Questions” below, but for now here’s the picture they provide for help in visualizing the
coordinate space:

Lab Exercises for “The Beauty and Joy of Computing”
Copyright © 2012, 2013 by Stephen R. Tate - Creative Commons License
See http :// www . uncg . edu / cmp / faculty / srtate / csc 100 labs for more information

http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs

Every sprite keeps track of it’s position as x/y coordinates, and each sprite also has a current
direction that says which way the sprite is facing. If the sprite is facing to the right and we move
the sprite 10 spaces, what this really means is that the x coordinate of the sprite is increased by
10.

Self-Assessment Questions

Use these questions to test your understanding of the Background reading. Answers can be
found at the end of the lab exercise.

1. What does BYOB stand for?
2. What is wrong with this statement: “A sprite is a picture.”
3. What is the difference between an action block and a control block?
4. Fill in the blank: The behavior of a block can be modified by changing a ________ of the

block.
5. What are the x/y coordinates of the lower-right corner of the stage?
6. If the x coordinates range from -240 to +240, how many pixels wide would the stage be?

Do you see an inconsistency with the description given in the pre-lab reading? Figure
out what’s wrong on your own, but then check the answers at the end of the handout for
correct information about the Scratch/BYOB screen dimensions.

Activities (In-Lab Work)
To complete this lab, you must complete four specific activities - for each activity there is a
minimum set of required activities, and you are encouraged to explore beyond the minimum
required to see what you can discover and create. You can’t hurt anything by exploring, so feel
free to click on different items in the BYOB interface to see what they will do. We provide some
suggestions of other activities to try, but do not feel constrained by our suggestions!

Activity 1: Meet BYOB

To start the BYOB environment, select BYOB from the BYOB folder in the Start menu
(assuming a Windows system) - on some systems there might also be a shortcut on the desktop
that you can double-click. This will open up the BYOB interaction window, which should look
familiar from the pre-lab reading.

Alonzo comes up as the default sprite, so try clicking on each of the three tabs in the sprite info
pane to see what is displayed. To start with, Alonzo has no scripts defined, no sounds, and only
one costume. Try clicking on the Stage in the sprites pane, and you’ll notice that it looks very
similar to a sprite, but the “Costumes” tab is replaced with a “Backgrounds” tab - this is how you
set the background of your stage!

After exploring the BYOB interface a little bit, you should create a second sprite to go along with
Alonzo. For our first experiment, let’s load a sprite from a file, so click on the star with the folder.
Are you curious about what’s in all of those folders? You should be! Click on any of the folders

Lab Exercises for “The Beauty and Joy of Computing”
Copyright © 2012, 2013 by Stephen R. Tate - Creative Commons License
See http :// www . uncg . edu / cmp / faculty / srtate / csc 100 labs for more information

http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs

and look through the sprites that are available - if you enter a folder and want to return to where
you were before, you can click the up arrow. After you click around a bit to get familiar with
what’s there, pick one particular sprite that you like - for example, let’s pick “dragon1-a” under
“Fantasy.” If you do this, it will create a new sprite in the sprites pane, and it will draw it on the
stage - centered, so it’s right on top of Alonzo! You can use the mouse to move these around on
the stage, so move them so that the dragon is to the right of Alonzo. Your stage should now
look like this:

Note that by clicking on the sprite in the sprites pane, you select that sprite to work with in the
middle sprite info pane, so you can switch back and forth between working on Alonzo and
working on your new sprite.

We’d like for our dragon to talk to Alonzo, but unfortunately, she’s facing the wrong way! How
can we fix this? We need to edit the sprite’s look, or costume - select the dragon sprite in the
sprites pane, and then select the Costumes tab in the middle area. This will show the “dragon1-
a” costume, along with “Edit” and “Copy” buttons. Click on “Edit” and the image editor will pop
up. The window that pops up should look familiar if you’ve ever used a paint or image editing
program on a computer, but the editor that comes with BYOB does not have all the capabilities
of a full-featured image editor - if you want to do anything particularly fancy, you can export the
costume to a file (right click on the costume to see the export option), edit using a program like
Photoshop or GIMP, and then import the modified version back into your project. The action

buttons include one that looks like - if you hover the mouse over this button you’ll see the
hint that lets you know that this will flip the image horizontally, which is what we want to do.
Click the button, and you’ll see that the dragon is now facing to the left, so it can talk to Alonzo!

Finally, try the “File” menu and select “Save As...” - this will prompt you for a name for your
project, which in this case consists of just two sprite definitions, and will save it. Go ahead and
save this as “Lab1-v1” - then exit BYOB and restart, so that you see only the default project with
Alonzo, and then use “File / Open” to restore your previous project to the workspace. Now you
know how to save your work so you can resume later. Specific information about where you
should store your program depends on your specific computing environment - your instructor
should explain your setup to you, and describe how you can save your work.

Lab Exercises for “The Beauty and Joy of Computing”
Copyright © 2012, 2013 by Stephen R. Tate - Creative Commons License
See http :// www . uncg . edu / cmp / faculty / srtate / csc 100 labs for more information

http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs

Activity 2: Basic Animation

In this activity, we’ll explore the blocks palette to add some actions to our sprites. We will start
by making the dragon talk by adding a talking “bubble” (comic strip style). The results of this
activity will be saved in a file named “Lab1-v2,” so it’s a good idea to start the activity by using
“Save As …” in the File menu to save your current work (the result of Activity 1) as “Lab1-v2” -
this way, you can save (or checkpoint) your work by clicking on the save button as you
proceed through the activity. By doing the “Save As” at the beginning of this activity, you ensure
that you have a new file to save things in, and the “Lab1-v1” file won’t be changed by
accidentally saving over it. This is a fairly long activity, so it’s good to save every now and then
to make sure you don’t lose your work.

First, get the BYOB workspace into a state that we can work with: Make sure the dragon is
selected in the sprites pane, and select the “Scripts” tab in the sprite info pane. Next, click the
purple “Looks” button at the top of the blocks palette. Each of the blocks that is displayed will
somehow alter the way the dragon looks - if you want to see what they do, you can click on the
block in the block palette. For example, click the “hide” block, and the dragon will disappear!
Don’t worry - the dragon hasn’t been deleted, it’s just (temporarily) not displayed on the stage.
Click the “show” button, and it will re-appear! Click the “Change size by …” button a few times
and watch the dragon grow in size - you can undo these changes by clicking the “set size to
100%” button, which will reset the size to normal.

Now click the “say Hello! for 2 secs” button to see how to make the dragon say something. After
2 seconds (do you see why?) the speech bubble will disappear.

Obviously, if you had to go through and click each button to cause each action, it would be
really tedious. Scripts are a way of chaining actions together to form more complex actions, and
to define actions that should be performed in response to user actions or other events. To start,
drag the “say Hello! for 2 secs” over to the sprite info pane (if you followed the directions above,
the “Scripts” tab should be selected in that pane). Next, drag the same block over to the middle
area again - when you get near the first block you placed, a highlight bar will appear either
above or below the existing piece, and if you release it when the bottom edge is highlighted the
new piece will “snap” into place on that side of the existing piece. Once you have snapped these
two pieces together, click on the first parameter (“Hello!”) in the bottom block, and change the
text to “I’m a dragon”. Your two-block component should now look like this:

This is now a sequence of two actions which will be done in sequence. Click on any of the
purple parts, and you’ll see the first speech bubble appear with “Hello!”, and then two seconds
later it will be replaced by a second bubble that says “I’m a dragon”. Note that you can adjust
the timing by clicking on either of the numbers and changing the argument for the number of
seconds that the bubble is displayed - these don’t need to be whole numbers, so you could
have “Hello!” only appear for 0.5 seconds if you’d like. Play around with this a little bit to get the
timing the way you like it.

Lab Exercises for “The Beauty and Joy of Computing”
Copyright © 2012, 2013 by Stephen R. Tate - Creative Commons License
See http :// www . uncg . edu / cmp / faculty / srtate / csc 100 labs for more information

http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs

Try switching between sprites in the sprites pane, and notice that these blocks that you drug out
are only visible when the dragon is selected. We say that this script is local to the dragon sprite,
meaning that they are attached to that specific sprite and blocks like “say” operate only on that
sprite. If you want another sprite to say something, you must select that other sprite and add
blocks to its local scripts.

Next, add another “say” block below these to say “Want to see me breathe fire?” for 2 seconds
(or however long you’d like). Now you should have a sequence of three speech bubbles - and
now we want the dragon to breathe fire! To do this, we need to change the dragon’s picture to
include fire - recall that the dragon’s picture is called its “costume,” so click on the “Costumes”
tab on the center area. Click the “Import” button at the top, and you’ll see the same file browser
that you saw when you first created the dragon sprite; however, now when you click on an
image it will not create a new sprite, but rather add an alternate costume for the current sprite.
Find the picture of the dragon breathing fire (it’s called “dragon1-b”) and select it - once it’s
loaded as a costume, you’ll notice that it is facing the wrong way, just like our original dragon
picture. Do you remember how to flip the picture horizontally? Do it!

Now you have two different costumes for the dragon, and we’ll have the regular dragon switch
to the fire breathing dragon after the third speech bubble. To do this, switch back to the dragon’s
“Scripts” tab, and drag the “switch to costume...” block out and put it under the speaking blocks.
Make sure the costume name to switch to says “dragon1-b”, and now run the 4-block
component by clicking on a purple part. Cool!

The problem now is that the dragon is left breathing fire - we would like the fire breathing to be
temporary, so add another “switch to costume...” block under the last one, and switch back to
the normal dragon. Finally add a “say” block to say “Isn’t that cool?” Now your script should look
like this:

Run the script - did you see the fire? Better look fast! What’s the problem?

The problem is that you switch costumes twice in a row, at computer speed, so you the fire
breathing flashes by so fast that it’s difficult to see. This is a place where we want to put in a
delay, so that we can slow down the sequence to see the effects of one block before going right
into the next one. The block we need is a “Control” block, so click the orange “Control” button at
the top of the block palette. Find the block that says “wait for 1 secs” and drag it out - position it
carefully so that it goes between the two costume change blocks, so that your script looks like
this:

Lab Exercises for “The Beauty and Joy of Computing”
Copyright © 2012, 2013 by Stephen R. Tate - Creative Commons License
See http :// www . uncg . edu / cmp / faculty / srtate / csc 100 labs for more information

http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs

Now run it - looks better, right?

Next, let’s try adding motion by having the dragon move up and down slightly, imitating a
hovering look. In the pre-lab reading, we talked about how each sprite keeps track of its current
position. You can see the current position of the selected sprite in the sprite info pane, at the top
- right above the tabs it will say something like

x: 120 y: 2 direction: 90
Your numbers will probably be different, and we won’t worry about the “direction” for now, but
this tells me that my dragon is at position (120,2). Grab the dragon picture and move it around,
and you’ll see these coordinates change - after moving the dragon around, leave it in a
reasonable starting position for this animation. Now click the “Motion” button at the top of the
block palette, find the button that says “go to x: 120 y: 2” (again, your numbers will probably be
different). Drag this block out to the Scripts tab for your dragon, and place it down, but do not
connect it to the previous component - just drop it in a clear spot of the scripts area. If the
numbers in this block do not match your current dragon position, change them to match. Now
what happens if you click this block? If you did everything right, nothing will happen - it “move”
the dragon to the same position it’s currently in - why would you want to do this?

The answer to that last question is this: When an animation ends, if sprites have been moving
around, they will be in unpredictable positions. To start the animation with sprites in the correct
positions, you should always put one of these “go to” blocks at the beginning of your motion
sequence. You can think about this as a “reset button” for the position of the sprite.

Next we want to move the dragon up and down, as if it is hovering. To do this, drag the “glide”
block out and snap it in place below the “go to” block. The first number controls the speed (the
time, in seconds, of the glide), and the last numbers give the final location of the end of the glide
path. We want the dragon to go up a little, so set the (x,y) coordinates at the end of the glide
path to the same x value as the beginning position, and the y coordinate to be 10 greater - for
example, if the starting position is (120,2), then you should glide to (120,12). Finally, put another
glide block below this one to glide back to the original position, and experiment with time values
to get a something that looks right to you. For example, your final movement block might look
like this:

Next we want to keep doing these operations over and over. Going back to the “Control” blocks,
find the “forever” block. Note that this block looks different from the ones you’ve used before -

Lab Exercises for “The Beauty and Joy of Computing”
Copyright © 2012, 2013 by Stephen R. Tate - Creative Commons License
See http :// www . uncg . edu / cmp / faculty / srtate / csc 100 labs for more information

http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs

it’s a “C block” (named after its shape), and has other blocks not only before and after it, but
also inside it. The effect of this particular block is to repeat the sequence of actions inside it over
and over - forever! If you’re careful about how you move it out, you can click it around the two
“glide” blocks so that it looks like this:

Now click at the beginning, and the dragon will float up and down repeatedly. This will go on
forever (that’s the name of the block!) unless you stop it, which is what the red stop-sign button
at the top right of the stage does. Try starting and stopping this a few times to see how this
works.

Finally, in an animation, we don’t really want to start a single sequence of operations for just one
sprite - we want to start the entire animation at once. We have defined two sequences of actions
now: the speaking and fire breathing sequence, and the flying sequence. Drag out the “When
(green flag) clicked” block (in the control category) out and put it at the top of both of these
sequences, and put the “stop all” (also in the control set) out and put it at the end of the speech
sequence. Now you have two blocks that look like this:

Click the green flag above the stage, and both sequences will be run. The dragon will fly up and
down while it is talking and breathing fire!

Now that you’ve done all of this, save this project as “Lab1-v2”.

Activity 3: Coordinating Multiple Sprites

So far, only our dragon has done anything - what about Alonzo? Let’s have Alonzo say
something after the dragon says “I’m a dragon” and before she says “Want to see me breathe
fire?” Switch over to the Alonzo sprite, and add a script that does the following:

Tip: If you need to change several parameters, click on the first one - in this example, change
the first text to “Hi, I’m Alonzo.” After you type the text, you don’t need to take your hands off the

Lab Exercises for “The Beauty and Joy of Computing”
Copyright © 2012, 2013 by Stephen R. Tate - Creative Commons License
See http :// www . uncg . edu / cmp / faculty / srtate / csc 100 labs for more information

http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs

keyboard to select the next parameter with the mouse - just hit the “Tab” key and it will switch
over to the next parameter, which you can type in. It’s often faster to drag a bunch of blocks that
you need out, snap them together without worrying about the arguments, and then change all
the arguments at once by tabbing between them.

The problem is to figure out how to make Alonzo say this at the right time. If you had him say it
when the green flag was pressed, he’d be talking at the same time as the dragon (try it!). The
answer to this problem is to have the sprites “signal” each other when they get to different parts
of their scripts.

What we need is a way for the dragon to signal Alonzo that it is finished talking, and is ready for
Alonzo to talk (isn’t that polite and civilized? sometimes these signals in real life would help!).
This is precisely what “broadcast messages” are for - to allow sprites to signal each other
about certain events.

To Do: On the scripts page for the dragon, use the mouse to grab the block where the dragon
says “Want to see me breathe fire?” and drag it away - notice how this separates that block and
everything below it from the big dragon script. Now, in the blocks palette, select the “Control”
category, and drag the “broadcast” block out to add to the dragon’s initial dialog script. The only
parameter in the broadcast block is blank (unless you have been experimenting with messages
already!), so click on it and select “New” from the popup menu. You should now be prompted for
a message name - any sprite can send a message for any reason, which is hard to keep track
of in a complex animation, so it is important to give messages meaningful names that help you
remember their purpose. For example, what we want to signal here is that the dragon is done
speaking for the first time, so let’s call this message “Dragon Done 1” - your first dragon script
block should now look like this:

Note that you can also name sprites, so changing those names from “Sprite1” and “Sprite2” to
something more meaningful (like “Alonzo” and “Dragon”) would be a good idea.

Now that the dragon can broadcast a message, there needs to be some way to receive that
message and make it trigger an action. For this, use the “when I receive...” block - switch over to
Alonzo, separate the actions from the “when green flag clicked” block (if you put that block in),
and start Alonzo’s dialog with the “when I receive...” block - you should select the “Dragon Done
1” message for this block’s parameter. Next, put another broadcast block at the end of Alonzo’s
dialog, named something like “Alonzo Done 1” - now Alonzo’s script should look like this:

Lab Exercises for “The Beauty and Joy of Computing”
Copyright © 2012, 2013 by Stephen R. Tate - Creative Commons License
See http :// www . uncg . edu / cmp / faculty / srtate / csc 100 labs for more information

http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs

Finally, remember those blocks that you separated from the dragon’s script at the beginning of
this activity? Make them run when they receive the “Alonzo Done 1” message. If you have done
all of this correctly, then you can click the green flag, and you will have an animation of a
synchronized dialog between Alonzo and the dragon, while the dragon is flying and breathes
fire. Not exactly a Pixar short, but still pretty cool for a first try! Save this project as “Lab1-v3”.

Activity 4: Get Creative!

You have now experimented with the basics of BYOB, and should have a decent understanding
of what sprites are and how you can program them with sequences of actions. Now you should
play around with this to see if you can animate something of your choosing - for example, take a
brief exchange from a movie or a TV show, or make something up. You can do whatever you
want, but must satisfy the following minimum requirements: you must have at least two
characters (i.e., sprites) in your animation, each must have at least two distinct sequences of
actions (e.g., dialog sequences), and the actions of the two characters must be coordinated with
each other using broadcast signals. Browse through the available sprite images for fun
characters, or if you’re really ambitious see if you can get images from the Internet imported as
sprite costumes. And most importantly: Have fun with it! Save your creation as “Lab1-myscript”.

As a final note, there are a lot of examples that you can access under “File / Open” and
selecting the “Examples” button on the left. These use a lot of features we haven’t worked with
yet, but it is still interesting to click through the examples and see what’s there.

Discussion (Post-Lab Follow-up)
Beyond learning the basics of BYOB, there are a few important concepts that you were exposed
to in this assignment, which are discussed here.

Problem Decomposition: This is the fancy way of saying that a big problem was broken down
into smaller pieces that could be tackled individually. Our final Alonzo/Dragon conversation
involved several pieces: Alonzo and the dragon talking, and the dragon flying. When you think
about writing a program like this, your first step should be to identify all the pieces that can
operate independently - don’t think of it as one big program, but think “the dragon will say these
things before waiting for a response,” and “the dragon will fly while all of this is going on.” Not
only does this help you think about solving the problem, since you’re working on smaller
problems, but it also allows you to develop small pieces that can be constructed and tested
individually before being put together in a larger program. This is one of the most important
skills for a software developer: something like Microsoft Windows has tens of millions of lines of
code (individual instructions), but in the design of the system it is decomposed into components
that individual teams or programmers can work on independently. Imagine how impossible it

Lab Exercises for “The Beauty and Joy of Computing”
Copyright © 2012, 2013 by Stephen R. Tate - Creative Commons License
See http :// www . uncg . edu / cmp / faculty / srtate / csc 100 labs for more information

http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs

would be if all the programmers had to work on the program as one big chunk of code! If you
study more about construction and testing of large software systems, some terms that come up
include top - down design (starting at the overall idea for your program and breaking it down into
smaller pieces, and then those down into smaller pieces, and then those...), unit testing (testing
individual pieces to make sure they work on their own), integration testing (making sure those
individual pieces work together properly), and system testing (making sure the final product
works as required).

Event-driven Programming: Each set of blocks you put together was “triggered” by something
for it to start running, whether it was pressing the green flag or receiving a broadcast message.
This style of programming is called “event-driven programming” and is common for highly
interactive programs. Programming graphical user interfaces (GUIs) is an example of something
that is highly event-driven - the programmer defines the interface elements (drop down menus,
buttons, etc.) and then defines actions that are executed when these elements are interacted
with (e.g., a button is pressed). Not all programming is like this, however - large computational
tasks, like simulating a galaxy, do lots of computational number-crunching through well-defined
operations, and there are no events to respond to. Picking the right style of programming is
something that people get better at once they get experience in the different styles.

Concurrency: Concurrency means that different tasks are happening at the same time. For
example, the sequence of instructions for the dragon talking are being executed at the same
time as the sequence of instructions for the dragon flying. Notice that concurrency is very
natural in BYOB: different actions that are triggered by the same event (like pressing the green
flag) happen at the same time. What is interesting is that while this is very natural in BYOB and
Scratch, more “advanced” programming languages like C++ or Python do not support
concurrent operations in nearly as clean and nice a fashion. However, that’s also
understandable: concurrency in large systems, where many very complex actions can be
happening at the same time, can be difficult to design and test. A final note on concurrency: You
could define a dozen concurrent tasks in Scratch, and they would all execute concurrently - how
does it do this if there is only one processor in the computer? The answer is that, unseen to you,
the computer is not really executing all of these at the same time. It will execute one task for a
very small amount of time (like a hundredth of a second), and then execute another one for a
small amount of time, and will keep alternating between these tasks so quickly that it looks like
they are all happening at the same time - this is similar to playing a movie, where individual still
pictures are flashed before you at a fast enough rate to give you the impression that there is
motion. Modern processors also have some capabilities for actually executing multiple things at
the same time - for example, a “quad-core” processor could actually be running four tasks
simultaneously. However, if you have 12 tasks defined, then each core could be switching
rapidly between three different tasks.

Versioning: As you added more and more functionality to the animation with Alonzo and the
dragon, you saved several times, with names “Lab1-v1”, “Lab1-v2”, and “Lab1-v3”. One reason
for this is because you are in a class and need to turn in all three versions, so you need different
file names. However, if your initial goal was just to produce the final animation and not to
document your work in the lab, you still might save multiple copies - or versions - like this, since
it allows you to go back to a previous version if you decide you don’t like your most recent

Lab Exercises for “The Beauty and Joy of Computing”
Copyright © 2012, 2013 by Stephen R. Tate - Creative Commons License
See http :// www . uncg . edu / cmp / faculty / srtate / csc 100 labs for more information

http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs

additions. This is a very common practice, in both programming and general computer work - for
example, when multiple people are collaboratively working on a word-processing document, it is
common for people to save new versions with the date appended to the filename. By writing the
date in the order year-month-date, a sorted list of files by filename will provide them in order.
For example, the file named “Proposal-2012-05-23.doc” would be the version of the proposal
written on May 23, 2012. Another common versioning practice is for authors to put their initials
at the end of the filename, so you might know that a particular version was edited by “srt” (for
example). Finally, professional software development teams often use software called “Version
Control Systems” (VCS) which take care of versioning automatically - when software is saved
(or “committed”) to a VCS it is automatically assigned a new version number. Previous versions
can always be accessed, and VCS systems always provide a way to reconcile and merge
changes that are made by different team members.

Terminology
The following terms were introduced in this lab.

● action block : A block whose execution causes some direct action on or by a sprite
(movement, sound, changing costume, talking, etc.).

● Alonzo : The BYOB mascot, and the first sprite that appears by default in an empty
project.

● argument : A value that is provided for a parameter.
● block : A “puzzle piece” that defines a particular programmable action for a sprite.
● blocks palette : The left-most pane of the BYOB window, that contains all of the blocks

that can be used in your scripts.
● broadcast message : A message sent out by a script, which can be received by other

scripts. This is useful for synchronizing between scripts or sprites.
● BYOB : An enhanced version of the Scratch programming environment. Scratch was

developed at MIT, and the BYOB extensions were developed at the University of
California at Berkeley.

● C block : A block that is shaped like the letter C, so that other blocks can be put inside it
and are then controlled by the C block. “C block” refers to the shape, but C blocks are
always control blocks.

● category : Blocks belong to a category (such as “motion” or “looks”) that describes what
they do - the blocks palette is organized by category to make it easier to find blocks.

● checkpoint : Saving an intermediate version of your work so that you can return to that
point later if your work gets messed up.

● concurrency : Multiple actions happening (or appearing to happen) at the same time.
● control block : A block that controls the execution of another block - it can control how

many times a block will execute, or even whether it executes at all.
● costume : A graphical representation of a sprite. Sprites can have multiple costumes if

they have different looks throughout the course of a program, and the sprite switches
between costumes to change how it looks.

● event - driven programming : A style of programming in which scripts are designed to
respond to events, such as keys being pressed, or broadcast messages being received.

Lab Exercises for “The Beauty and Joy of Computing”
Copyright © 2012, 2013 by Stephen R. Tate - Creative Commons License
See http :// www . uncg . edu / cmp / faculty / srtate / csc 100 labs for more information

http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs

● executes / execution : This refers to a block performing the action that it is programmed to
do - we say that a block “executes” its action, and refer to that as the “execution” of the
block.

● local : An item (script, variable, etc.) that is only defined in a limited context, like a script
that is defined only for a specific sprite.

● menu bar : The narrow area across the top of the BYOB window that gives access to
drop-down menus for loading or saving projects, setting options, etc.

● pane : An area of a window that serves a specific purpose, like selecting the current
sprite (in the “sprites pane”) or showing/defining characteristics of the current sprite (in
the “sprite info pane”).

● parameters : Positions in a block that define values that can be changed for different
instances of the block.

● pixel : Short for “picture element,” this is the basic unit of measurement in graphics. It
corresponds to one dot on a display or in an image.

● problem decomposition : The process of taking a complex task, and breaking it down into
simple pieces that can be worked on independently.

● run : The execution of a series of blocks that are connected together in a script. We can
also talk about running a program, which is a collection of different scripts.

● script : Sequences of actions that can be initiated either by the programmer or by some
event in the program (the green start flag being clicked, receiving a broadcast message,
the user pressing a key, etc.).

● scripts area : A shorter way of saying “the scripts tab of the sprite info pane.”
● sprite : A character or other object that has (optionally) actions/scripts, costumes, and/or

sounds associated with it.
● sprite info pane : The center pane of the BYOB window, where you can define scripts,

costumes, and sounds for the current sprite.
● sprites pane : The lower-right part of the BYOB window, where you can select a sprite to

make the current sprite.
● stage : The space where your animations play out, and scripts are drawn. The stage can

have a background that will be displayed behind any sprites that are on the stage.
● versioning : Using separate files to save a project as it develops and becomes more

complex. This is useful if you ever have to return to (or “revert to”) an older version.
● version control system : A software system that manages versions of files in a possibly

complex project.

Submission
In this lab, you should have saved the following files: Lab1-v1, Lab1-v2, Lab1-v3, and Lab1-
myscript. Turn these in using whatever submission mechanism your school has set up for you.

Answers to Pre-Lab Self-Assessment Questions
1. What does BYOB stand for?

Answer: BYOB stands for “Build Your Own Blocks,” which refers to the capability of a
programmer to define their own blocks (in Scratch, the programmer was restricted to just

Lab Exercises for “The Beauty and Joy of Computing”
Copyright © 2012, 2013 by Stephen R. Tate - Creative Commons License
See http :// www . uncg . edu / cmp / faculty / srtate / csc 100 labs for more information

http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs

the blocks that appeared in the blocks palette - in BYOB you get to make your own
blocks to use!).

2. What is wrong with this statement: “A sprite is a picture.”
Answer: A sprite is much more than a picture - sure, it is usually seen as a picture, but
that picture is one of potentially many costumes, and the sprite also contains sounds
that it can make, and scripts or programs that control its actions.

3. What is the difference between an action block and a control block?
Answer: An action block controls the actions of a sprite. A control block controls the
actions of other blocks.

4. Fill in the blank: The behavior of a block can be modified by changing a ________ of the
block.
Answer: Argument. Saying “parameter” here is not correct - the value you put in the slot
of the block is an argument. Again, we’ll get into the distinctions between these two
terms in more detail in a later lab.

5. What are the x/y coordinates of the lower-right corner of the stage?
Answer: Based on the information in the Pre-Lab Reading and the Scratch
documentation, the correct answer should be (240,-180). However, in light of the
correction given in question 6 below, the correct answer is actually (239,-179). Note that
the x coordinate is at its highest possible positive value since the position is to the right,
and the y coordinate is at its largest magnitude negative value since we want the bottom
part of the stage.

6. If the x coordinates range from -240 to +240, how many pixels wide would the stage be?
Do you see an inconsistency with the description given in the pre-lab reading?
Answer: The stage would be 481 pixels wide! There are 240 positive x values, 240
negative x values, and x can also be zero. This means the numbers given in the Scratch
documentation are not consistent with each other, so something is wrong in their
description. While errors in documentation can be frustrating, the nice thing about most
computer programs is that you can experiment to find out the correct information
yourself (you would need to know about some of the BYOB commands in order to do
this experimentation) - yes, it’s frustrating to have to do that, but at least it’s possible! It
turns out that Scratch/BYOB x coordinates actually range from -239 to +239, and y
coordinates range from -179 to +179, giving a stage size of 479x359. In other words,
every one of the numbers they gave in the Scratch documentation was wrong (they
were all off by 1).

Lab Exercises for “The Beauty and Joy of Computing”
Copyright © 2012, 2013 by Stephen R. Tate - Creative Commons License
See http :// www . uncg . edu / cmp / faculty / srtate / csc 100 labs for more information

http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs

	Objectives
	Background (Pre-Lab Reading)
	Overview of BYOB
	The Blocks Palette and Creating Scripts
	Sprite Positions and Stage Coordinates
	Self-Assessment Questions
	Activities (In-Lab Work)
	Activity 1: Meet BYOB
	Activity 2: Basic Animation
	Activity 3: Coordinating Multiple Sprites
	Activity 4: Get Creative!
	Discussion (Post-Lab Follow-up)
	Terminology
	Submission

