Data Representation

Interpreting bits to give them meaning
Part 2: Hexadecimal and Practical Issues

Notes for CSC 100 - The Beauty and Joy of Computing The University of North Carolina at Greensboro

Class Reminders

For this week:

- Assignment 1 due Friday (10:00am)
- Review Lab 3 solutions (in Blackboard)
- Do the Pre-Lab reading for Lab 4 (really!)

For the not-so-distant future:

- Blown to Bits Chapter 2 - reflection due Tues, Sept 17 (10:00am)

From Last Time...

Key points from "Data Representation, Part 1":

- A number is an abstract idea
- Anything you can point at or write down is a representation of a number
- Lots of different representations for the same number Written in decimal notation (what we're most familiar with)
- Written in roman numerals (e.g., 6 is the same as VI)
- Written as a set of "tick marks" (e.g., 6 is the same as IIIIII)

Written in binary (e.g., 6 is the same as 1102)

- As a sequence of voltages on wires
- Computers work with binary because switches are off or on (0 or 1)
- Converting between number bases doesn't change the number, just chooses a different representation

Hexadecimal - another useful base

Hexadecimal is base 16.
How do we get 16 different digits? Use letters!
Hexadecimal digits (or "hex digits" for short):
$0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$
Counting - now our odometer has 16 digits:

$0_{16}\left(=0_{10}\right)$	$6_{16}\left(=6_{10}\right)$	$\mathrm{C}_{16}\left(=12_{10}\right)$	$12_{16}\left(=18_{10}\right)$
$1_{16}\left(=1_{10}\right)$	$7_{16}\left(=7_{10}\right)$	$\mathrm{D}_{16}\left(=13_{10}\right)$	$13_{16}\left(=19_{10}\right)$
$2_{16}\left(=2_{10}\right)$	$8_{16}\left(=8_{10}\right)$	$\mathrm{E}_{16}\left(=14_{10}\right)$	$14_{16}\left(=20_{10}\right)$
$3_{16}\left(=3_{10}\right)$	$9_{16}\left(=9_{10}\right)$	$\mathrm{F}_{16}\left(=15_{10}\right)$	$15_{16}\left(=21_{10}\right)$
$4_{16}\left(=4_{10}\right)$	$\mathrm{A}_{16}\left(=10_{10}\right)$	$10_{16}\left(=16_{10}\right)$	$16_{16}\left(=22_{10}\right)$
$5_{16}\left(=5_{10}\right)$	$\mathrm{B}_{16}\left(=11_{10}\right)$	$11_{16}\left(=17_{10}\right)$	$17_{16}\left(=23_{10}\right)$

Hexadecimal/Decimal Conversions

Conversion process is like binary, but base is 16
Problem 1: Convert 423_{10} to hexadecimal: 423/16 = quotient 26 , remainder $7\left(=7_{16}\right)$ $26 / 16=$ quotient 1 , remainder $10\left(=A_{16}\right)$ $1 / 16=$ quotient 0 , remainder $\left.1\left(=1_{16}\right)^{16}\right)$

- Reading digits bottom-up: $423_{10}=1 \mathrm{~A} 7_{16}$

Problem 2: Convert $9 \mathrm{C} 3_{16}$ to decimal:
Start with first digit, 9
$9 * 16+12=156$
$156^{\star} 16+3=2499$

- Therefore, $9 C 3_{16}=2499_{10}$

Hex Digit List
$0_{16}=0_{10}$
$1_{16}=1_{10}$
$1_{16}=1_{1}$
$2_{16}=2_{1}$
$2_{16}=2_{1}$
$3_{16}=3$
$3_{16}=3_{10}$
$4_{16}=4_{10}$
$5_{16}^{16}=5_{10}^{10}$
$6_{16}=6$
$7_{16}=7_{10}$
$8_{16}=8$
$9_{16}=9_{1}$
9_{16}
$\begin{aligned} 9_{16} & =9_{10} \\ \mathrm{~A}_{16} & =10\end{aligned}$
$A_{16}=10_{10}$
$B=11$
$\mathrm{B}_{16}=11_{10}$
$\mathrm{C}_{16}=12_{10}$
$\begin{aligned} C_{16} & =12_{10} \\ D_{16} & =13_{10} \\ E & =14\end{aligned}$
$\mathrm{E}_{16}=14_{10}$
$F_{16}=15_{10}$

Hexadecimal/Decimal Conversions

Conversion process is like binary, but base is 16
Problem 1: Convert 423_{10} to hexadecimal: $423 / 16=$ quotient 26 , remainder $7\left(=7_{16}\right)$ 26/16 = quotient 1 , remainder $10\left(=\mathrm{A}_{16}\right)$
$1 / 16=$ quotient 0 , remainder $1\left(=1_{16}\right)$

- Reading digits bottom-up: $423_{10}=1 \mathrm{~A} 7_{16}$

Problem 2: Convert 9C3 to decimal: Start with first digit, 9 $9 * 16+12=156$ $156^{\star} 16+3=2499$

- Therefore, $9 C 3_{16}=2499_{10}$

Hex Digit List
$0_{16}=0_{10}$
$1_{16}=1_{10}$
$2_{16}=2_{10}$
$3_{16}=3_{10}$
$4_{16}=4_{10}$
$5_{16}=5_{10}$
$6_{16}=6_{10}$
$7_{16}=7_{10}$
$8_{16}=8_{10}$
$9_{16}=9_{10}$
$\mathrm{~A}_{16}=10_{10}$
$\mathrm{~B}_{16}=11_{10}$
$\mathrm{C}_{16}=12_{10}$
$\mathrm{D}_{16}=13_{10}$
$\mathrm{E}_{16}=14_{10}$
$\mathrm{~F}_{16}=15_{10}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Hexadecimal/Binary Conversions

Exactly 16 hex digits, and exactly 16 4-bit binary numbers
Converting between hex and binary is easy - 4 bits at a time:

Problem 1: Convert 01110100110_{2} to hexadecimal

Problem 2: Convert D49 ${ }_{16}$ to binary

Hexadecimal/Binary Conversions

Use of hexadecimal in file dumps

Binary is a very long format (8 bits per byte), but often data files only make sense as binary data. Hexadecimal is great for this - simple one-to-one correspondence with binary, and more compact.
Sample "file dump":

0000000:	ffdb	ffel	35 fe	4578	6966	0000	4949	2a005.Exif..II*.
0000010:	0800	0000	0b00	0 el	0200	2000	0000	9200	
0000020:	0000	0 ¢01	0200	0600	0000	b200	0000	1001	
0000030:	0200	1900	0000	b800	0000	1201	0300	0100	
0000040:	0000	0600	0000	1 a 01	0500	0100	0000	d800	
0000050:	0000	1b01	0500	0100	0000	e000	0000	2801	(.
0000060:	0300	0100	0000	0200	0000	3201	0200	1400 $2 . .$.
0000070:	0000	e800	0000	1302	0300	0100	0000	0200	
0000080:	0000	6987	0400	0100	0000	fc00	0000	2588	
0000090:	0400	0100	0000	2413	0000	£213	0000	2020	
00000a0:	2020	2020	2020	2020	2020	2020	2020	2020	
00000bo:	2020	2020	2020	2020	2020	2020	2000	4361	. Ca
00000co:	6e6f	6e00	4361	6e6f	6 e 20	506 f	7765	7253	non.Canon Powers
00000do:	6865	7420	5358	3233	3020	4853	0000	0000	hot SX230 HS..
00000e0:	0000	0000	b400	0000	0100	0000	b400	0000	
00000f0:	0100	0000	3230	3131	3 a 0	373a	3134	2031	2011:07:14 1
0000100:	353a	3039	3 3 2	3700	2100	9382	0500	0100	5:09:27.!.......
0000110:	0000	8 e 02	0000	9 d 82	0500	0100	0000	9602	
0000120:	0000	2788	0300	0100	0000	6400	0000	3088	..d...0.

Remember....

Don't get lost in the details and manipulations:
Any base is a representation of an abstract number

We are interested in working with the number, and computations are not "in a base" - the base is only useful for having it make sense to us or the computer

Practice!

You should be able to convert from one base to another.
Lots of ways to practice:

- By hand: Pick a random number convert to binary and convert back - did you get the same value?
- This isn't foolproof: You could have made two mistakes!
- With a calculator: Many calculators (physical and software) do base conversion - check your randomly selected conversions.
- With a web site: Several web sites provide says to practice
- For example, see http://cs.iupui.edu/~aharris/230/binPractice.html

Practical Issues with Numbers
 Finite Length Integers

Question (a little contrived):
If a CPU has 4 single-bit storage locations for each number, what happens when you add:

$$
1111_{2}+0001_{2}=-2
$$

Practical Issues with Numbers

Finite Length Integers
Question (a little contrived):
If a CPU has 4 single-bit storage locations for each number, what happens when you add:

$$
1111_{2}+0001_{2}=-2
$$

Answer Part 1: If you did this on paper, you'd get 10000_{2} Which leads to another question:
How do we store 5 bits when there are only storage locations for 4 bits?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Practical Issues with Numbers

Finite Length Integers
Question (a little contrived): \qquad
If a CPU has 4 single-bit storage locations for each number, what happens when you add:

$$
1111_{2}+0001_{2}=
$$

Answer Part 1: If you did this on paper, you'd get 10000_{2} \qquad
Which leads to another question:
How do we store 5 bits when there are only storage locations for 4 bits?
\qquad

Answer Part 2: What CPUs do is throw out the 5th bit, storing 0000_{2} \qquad Which means: To a 4-bit computer, $15+1=0$

Practical Issues with Numbers
 Finite Length Integers

On real computers:

- This happens, but with 32 -bit numbers or 64 -bit numbers instead of 4 .
- When things "wrap around" it actually goes to negative values. On a 32 -bit CPU: $2,147,483,647+1=-2,147,483,648$

However: Some programming languages/systems support numbers larger than the hardware, by using multiple memory locations.

Practical Issues with Numbers

Finite Length Integers

In C:	In Java:	In Python:
int val-1000*1000*1000*1000; printf ("\$d \n", val);	int val $=1000 * 1000 * 1000 * 1000$; System.out.println(val);	$\begin{aligned} & x-1000 \times 1000 \times 1000 \times 1000 \\ & \text { print } x \end{aligned}$
Outputs:	Outputs:	Outputs:
-727379968	-727379968	100000000000

Practical Issues with Numbers
 Finite Length Integers

First thought: Python is cool! Second thought: Don't expect something for nothing..

Let's do something pretty useless (that takes a lot of integer operations) \qquad
Problem: Compute the last 6 digits of the billionth Fibonacci number

Practical Issues with Numbers

Finite Length Integers

In C:	In Java:	In Python:
int val-1000*1000*1000*1000; printf("§d\n", val);	$\text { int val }-1000 \times 1000 \times 1000 \times 1000 ;$ system.out.printin (val);	$\begin{aligned} & x-1000 \times 1000 \times 1000 \times 1000 \\ & \text { print } x \end{aligned}$
Outputs:	Outputs:	Outputs:
-727379968	-727379968	1000000000000

First thought: Python is cool!
Second thought: Don't expect something for nothing..
Let's do something pretty useless (that takes a lot of integer operations)
Problem: Compute the last 6 digits of the billionth Fibonacci number

In C: $\quad 3.5$ seconds	In Java:	In Python:
	3.4 seconds 3 minutes, 56.2 seconds	

Practical Issues with Numbers

Finite Precision Floating Point
Question: How do you write out $1 / 3$ in decimal?
Answer: 0.33333333333...
Observation: Impossible to write out exactly with a finite number of digits The same holds in binary!

Can be written exactly	
$0.5=0.1_{2}$	Cannot be written exactly $0.25=0.01_{2}$ $1 / 3=0.0101010101 \ldots 2$ $1 / 375=0.001100110011 \ldots 2$ $1 / 10=0.0001100110011 \ldots 2$ 1

Imagine: How hard is it to write banking software when there is no finite representation of a dime (0.10 dollars)?!?!?
Solutions people came up with:
Work with cents (integers!) or special codings (BCD=Binary Coded Decimal)

Practical Issues with Numbers

Finite Precision Floating Point
Question: How do you write out $1 / 3$ in decimal?
Bottom Line:
Observation:
There are a lot of subtle problems with numbers that go beyond the level of study in CSC 100
Can be These issues usually don't come up.
$0.5=0$
$0.25=$ But \ldots when they matter, they can matter a LOT.
$0.375=$ For now: Be aware what the issues are.
Imagine: How For a later class: Understand the details.
representatio
Solutions people came up with:
Work with cents (integers!) or special codings (BCD=Binary Coded Decimal)

Still More Data Representation for Later

Now we know all about representing numbers
But computers also deal with text, web pages, pictures, sound/music, video, ...

How does that work?

