
SnapPy Documentation

The purpose of this document is to describe the available SnapPy functions and how they are
used.

SnapPy Program Structure

All SnapPy programs should start with “import snappy” on the first line of the file, and should
have “snappy.start()” as the last line in the file. Currently the stage is a fixed size of
480x320, with the same coordinate system as BYOB/Snap!. Locations are given as pairs (x,y).

Costumes

A Costume object is a picture that can be used by a sprite when it is drawn. The costume can
be loaded from an image file (all common formats supported, but typically you will want to use
an image format that supports transparency like PNG or GIF), or you can use one of the built-in
costumes. To create a costume object initialized from a file, you use the
snappy.CostumeFile(filename) function, like

costume = snappy.CostumeFile(‘joey.png’)

To create a costume object from the built-in costumes, you use
snappy.CostumeBuiltIn(name), where the name argument is one of the following:

Clock-hand
alonzo
dragon1-a
dragon1-b
car2
car-blue
car-bug
car-cow
bomb
wizardhat

Sprites

The basic graphical object in SnapPy is an object of type snappy.Sprite. The constructor for a
sprite takes 4 arguments, which are, in order, location, costume, proto, and hidden. They all
have default values, so can be specified out of order. A typical sprite creation will specify the first
two parameters (location and costume), but you can use just the proto argument if you want to
copy/clone an existing object. For example, to create an alonzo sprite with the standard
costume at the center of the screen, you could use

alonzo = snappy.Sprite((0,0), snappy.CostumeBuiltIn('alonzo'))

To clone an arrow sprite named aiming to create a new sprite named shot, you could use

shot = snappy.Sprite(proto=aiming)

Sprites have the following attributes that can be read (do not assign values to these, but they
can be read at any time):

sprite.location
sprite.size
sprite.direction
sprite.rotationStyle
sprite.costume_num

The following methods are available for any sprite – the functions parallel the similarly-named
blocks in BYOB, so I don’t provide any more detailed explanation here.

Motion methods
sprite.move(steps)
sprite.turnCW(degrees)
sprite.turnCCW(degrees)
sprite.pointInDirection(dir)
sprite.goTo(pos)
sprite.glideForTo(duration, to)
sprite.changeXBy(deltaX)
sprite.setXTo(newX)
sprite.changeYBy(deltaY)
sprite.setYTo(newY)
sprite.if_on_edge_bounce()

Looks methods
sprite.switchToCostume(number)
sprite.sayFor(text, duration)
sprite.say(text)
sprite.changeSizeBy(delta)
sprite.setSize(size)
sprite.show()
sprite.hide()
sprite.goToFront()
sprite.goBackLayers(num)

Sensing methods
sprite.touching_edge()
sprite.touching(other, offset=(0,0))

Miscellaneous methods
sprite.loadCostume(costume)
sprite.setRotStyle(style)
sprite.wait(duration)

Global functions (not Sprite methods)
snappy.launch(fn)
snappy.broadcast(signalName)
snappy.stop_all_scripts()

Event Handlers

Functions can be used as event handlers – code that will be executed whenever a certain event
occurs, such as a specific key being pressed, the green flag being clicked, or a signal received.
A signal handler is defined just like any other function, but should not take any arguments. If you
need to pass data into an event handler, the only way to do that at this time is to use global
variables.

To turn a function into an event handler, you precede the function “def” line with a line that
starts with “@snappy.” – here are the options:

@snappy.startOnGreenFlag()
Runs the function whenever the green flag in the SnapPy run window is clicked

@snappy.startOnKey(key)
Runs whenever the given key is pressed. key can be either a single letter or symbol key
(such as ‘a’, ‘ ‘, or ‘@’) or it can be one of the following words, representing the arrow
keys: ‘left’, ‘right’, ‘up’, or ‘down’.

@snappy.startOnReceiving(signalName)
Runs whenever any sprite or function broadcasts the signal named in this line. Names
are arbitrary strings. To broadcast a signal use snappy.broadcast(signalName). For
example, if you wanted a signal to represent whenever something was hit, you could
name the signal ‘hit’ and broadcast it using snappy.broadcast(‘hit’). Then any
function definition that was preceded with @snappy.startOnReceiving(‘hit’) would
be executed.

Example

The following is an example of a complete SnapPy program.

import snappy

alonzo = snappy.Sprite((-70,0), snappy.CostumeBuiltIn('alonzo'))
dragon = snappy.Sprite((120,0), snappy.CostumeBuiltIn('dragon1-a'))
dragon.setRotStyle(2)
dragon.pointInDirection(-90)
dragon.loadCostume(snappy.CostumeBuiltIn('dragon1-b'))

@snappy.startOnGreenFlag()
 def DragonScript1():
 sprite = dragon
 sprite.goTo((120,2))
 while True:
 sprite.glideForTo(0.5, (120,12))
 sprite.glideForTo(0.5, (120,2))

@snappy.startOnGreenFlag()
def DragonScript2():
 sprite = dragon
 sprite.sayFor("Hello!", 1)
 sprite.sayFor("I'm a dragon", 1)
 snappy.broadcast('Dragon Done')

@snappy.startOnReceiving('Alonzo Done')
def DragonScript3():
 sprite = dragon
 sprite.sayFor("Want to see me breathe fire?", 1)
 sprite.switchToCostume(1)
 sprite.wait(1)
 sprite.switchToCostume(0)
 sprite.sayFor("Isn't that cool?", 1)

@snappy.startOnReceiving('Dragon Done')
def AlonzoScript2():
 sprite=alonzo
 sprite.sayFor("Hi, I'm Alonzo", 1)
 sprite.sayFor("I'm a... well, I'm not sure", 1)
 snappy.broadcast('Alonzo Done')

snappy.start()

	SnapPy Documentation
	SnapPy Program Structure
	Costumes
	Sprites
	Motion methods
	Looks methods
	Sensing methods
	Miscellaneous methods
	Global functions (not Sprite methods)
	Event Handlers
	Example

