The Beauty and Joy of Computing
Lab Exercise 8: SnapPy Exploration and Testing

Objectives

This lab is different from previous labs. You will gain more experience and familiarity with Python
in this lab, but unlike previous weeks there aren’t specific concepts or learning objectives that
are the focus of the lab. You will experiment with an animation library in Python, create a simple
animation of your own, and then write up a brief report on your experiences.

There is no quiz for this week’s lab (the lab itself counts for the full 100 points). Enjoy Fall
Break!

Activities (In-Lab Work)

In this lab you will be experimenting with a Python module that | am working on that adds
animation capabilities to Python with operations that are patterned after BYOB. Since the newer
version of BYOB is called “Snap!” and this is in Python, | am calling this library SnapPy. You will
re-do some of the earlier animation BYOB exercises in SnapPy, and then explore some on your
own to make your own animation.

Activity 1: In this activity you will set up the computer with the software needed for the
remainder of the lab, and pull up and experiment with a sample animation program. SnapPy is
built on top of a free Python game library called Pygame. The standard Pygame install
procedure on Windows requires administrator privileges, so we cannot do this on school-
managed systems. While there are work-arounds to get the library to install, we are going to do
something a little different, which you can do on your own system as well if you want to
experiment more with Python.

We will use a special distribution of Python called “Portable Python,” which is designed so that
you can have a full Python working environment stored on a USB thumb drive that you can
carry around with you and use on different systems. We will install it on the hard drive of the lab
computer rather than a thumb drive, because that is faster for our purposes. First you need to
download the correct version of Portable Python: Go to http://portablepython.com, click
“Download” at the top, and then click “Older versions”. The version you want to download is
version 2.7.3.2 (this is the first version that included PyGame, and it is less than half the size of
the latest version in the 2.7 series). Click on this to download the file, and the go into the
downloads folder and run this .exe file to start the install procedure. When it prompts you for a
location, go to the beginning of the folder name and put in “C:\” to indicate the local harddrive.
Finally, follow the rest of the installation prompts. It will take a while to load everything, so be
patient!

To check whether your Portable Python installation will run, click on “Computer” in the Start
Menu, browse into the C:\ drive, and then into the Portable Python folder. Inside, you'll find the
IDLE program, so you should double-click this to run it. If an IDLE window opens, similar to what


http://portablepython.com/
http://portablepython.com/
http://portablepython.com/
http://portablepython.com/
http://portablepython.com/

you saw in the previous two labs, then everything is working fine! Leave the IDLE program up
and running while you do the following steps.

Next, you will need to copy a set of files into a folder to use for this lab. The files are all in a “Zip
file” on the class web site, just under this Lab 8 write-up. If you haven’t used Zip file before, it is
just a single file that acts as a container for compressed versions of other files. You can transfer
thousands of files with a single file transfer and then “unzip” or “extract” all the individual files
after the file transfer is complete. In this particular case, Lab8.zip contains 17 individual files that
you will need for this Lab. Depending on which browser you are using this may look slightly
different, but in Firefox you would click on the Lab8.zip link and select the “Open with Windows
Explorer” option to see what the zip file contains. This will open a regular file browser window,
and you can copy the Lab8 folder over to a convenient location, such as your UNCG S: drive.
For the rest of this writeup, let's assume that you have stored this folder and all its contents at
S:\CSC100\Lab8

You should have IDLE, the Python development environment that is part of “Portable Python,”
running from earlier, so select “File/Open” in the IDLE Shell window, and browse to
S:\CSC100\Lab8 in order to open “Lab8-Activity1.py”.

Open the Lab1 write-up from the class web page and review the BYOB code for the
conversation between Alonzo and the hovering dragon (Activity 3). That's exactly what the code
in “Lab8-Activity1.py” does, with one change: | don’t have the green flag start function finished in
SnapPy, so everything is started by broadcasting a signal named ‘Go’. There’s also one extra

event handler routine that will move Alonzo up when the “w” key is pressed. Read through and
study the Python code and see how the BYOB scripts are translated into Python code.

To start the Python code, press “F5” in the Lab8-Activity1.py program window to load the code,
and you should see the “RESTART” message in the shell window. You should also see a
window open up with some familiar looking characters in it! Remember the event handler for the
“‘w” key? Try pressing “w” a couple of times and see what happens.

You can also interact with these characters using BYOB-style Python functions. For example, try
typing “alonzo.changeYBy(40)” in the Python shell. Did you see Alonzo move up? Try
repeating, but with -40 as the argument to move Alonzo back down. Try some of the other
functions from the list of SnapPy functions at the end of this write-up. They work the same as
similarly-named BYOB functions, but be careful with locations: These are (x,y) coordinate pairs,
where those parentheses are part of the location notation. In other words, if you want to make
Alonzo move to location (-20,-50) you would say alonzo.goTo((-20,-50)) - the two sets of
parentheses are there because the outer ones are from the function notation (parentheses
around arguments) and the inner ones are part of the location coordinate notation. That’s hard
to explain, but it makes perfect sense if you think about for a bit.

Now try running the animation: Type “snappy.broadcast(Go’)” in the Python shell. You
should see the whole animation play out.



[T 1]

Next, try making some new event handlers. Copy the event handler for the “w” key and paste it

three times, changing the keys to “a”, “s”, and “d” keys to make Alonzo left, down, and right.
Reload by pressing “F5” and make sure Alonzo moves around.

Activity 2: You'll make your own animation in this activity. Start by selecting “File / New File” in
the Python shell to create a new, blank program. Do an immediate “Save As” to save your new
(blank) program as “Lab8-Activity2.py” — note that Lab8-Activity1 will stay open so that you can
use it as an example to follow, and you can cut and paste from one window to the other if you'd
like to.

For your animation, some BYOB costumes were loaded when you extracted files from the
Lab8.zip file. The following files are available, which correspond to the costumes with the same
names in BYOB: duck1.png, horse1-b.png, ghost1.png, ghoul1-a.png, troll.png, girl1-
standing.png, and girl1-walking.png. You also can make available any free costumes you can
find online simply by saving them in the Lab8 folder. Costumes can either be loaded when you
create a sprite with snappy.Sprite() or you can add them as additional costumes to an
existing sprite using loadCostume (). Use the code in Lab8-Activity1 as an example to follow.

Refer to the end of this handout for a quick SnapPy guide and function listing. Use this list for
some ideas on what you can do in your animation! Remember that names in Python are always
case sensitive, so get your capitalization right, and there is almost no error-checking or
robustness protections in SnapPy so if you mess up you may have to close out IDLE and re-
start everything. Save often! Spend some time and make a decent animation, but stop at least
30 minutes before the end of the lab period so you can complete Activity 3.

Activity 3: Finally, use Word to write a one-page report on your experience with SnapPy. Think
about how your experience with Python and SnapPy in this lab differs from what you did in Lab
1 with BYOB. Save this as Lab8.doc (or Lab8.docx).

Write at least one paragraph comparing the systems. Is the 2-window IDLE interface confusing?
Do you ever get the program and shell windows confused? Did you have difficulties with
aspects of the BYOB interface?

Write at least one paragraph on what aspects were easy or difficulty for you in SnapPy, as
compared to BYOB. Did you have a hard time getting function names correct? Was the overall
structure of the SnapPy program easy to follow? Did you encounter error messages that you
couldn’t understand?

Finally, write a paragraph thinking about this: Do you think you could have written the Python
animation in the first lab of the semester, like we did in BYOB? What would be the most difficult
parts of trying to do this in Lab 1?7 What aspects would have been better in Python than BYOB?

Submission

You should submit your Python programs (Lab8-Activity1.py and Lab8-Activity2.py) as well as
your experience report (Lab8.doc).



SnapPy Reference

SnapPy includes almost all of the basic movement functions of BYOB, but the “Pen” functions
are not implemented yet, as are some of the action features like detecting collisions. In addition,
costumes must be referred to by costume number (starting at costume number 0) rather than
name. Remember that locations are given in (x,y) notation where the parentheses are
necessary. In the following list of functions, “sprite.” at the beginning stands in for any
particular sprite. For example, if alonzo is supposed to move 30 steps, you would say
“alonzo.move(30)”. The functions are organized below by what category you would find them
under in BYOB.

Functions from the BYOB “Motion” category

sprite.move(steps)
sprite.turnCW(degrees)
sprite.turnCCW(degrees)
sprite.pointInDirection(dir)
sprite.setRotStyle(style)
sprite.goTo(pos)
sprite.glideForTo(duration, to)
sprite.changeXBy(deltaX)
sprite.setXTo(newX)
sprite.changeYBy(deltaY)
sprite.setYTo(newY)

Functions from the BYOB “Looks” category

sprite.loadCostume(fileName)
sprite.switchToCostume(number)
sprite.sayFor(text, duration)
sprite.say(text)
sprite.setSize(size)

Functions from the BYOB “Control” category

sprite.wait(duration)

Hat blocks: The equivalent of a hat block is including one of the following lines immediately
before a function definition, which controls what event makes the following definition run.
Functions like this that are written as event handlers should not have any parameters.

@snappy.startOnReceiving(signalName)
@snappy.startOnKey(key)

Non sprite-specific functions: Some functions operate on a larger scale, independent of a
particular sprite. For example, sending a broadcast message is not done any differently



regardless of what sprite sends it. For such a function, you always put “snappy.” at the
beginning of the function name:

snappy.broadcast(signalName)

Starting and stopping: You must call snappy.start() before any other SnapPy functions are
called. You can use snappy.stop() to halt any ongoing scripts.



	Objectives
	Activities (In-Lab Work)
	Submission
	SnapPy Reference

