
The Beauty and Joy of Computing1

Lab Exercise 9: Problem self-similarity and recursion

Objectives
By completing this lab exercise, you should learn to

● Recognize simple self-similar problems which are amenable to recursive solutions;
● Identify components of recursion: base case and recursive case;
● Build simple recursive functions in guided settings; and
● Give rough arguments as to why recursive solutions work.

Background (Pre-Lab Reading)
You should read this section before coming to the lab. It describes how various things work in
BYOB and provides pictures to show what they look like in BYOB. You only need to read this
material to get familiar with it. There is no need to actually do the actions described in this
section, but you certainly can do them if it would help you follow along with the examples.

A recursive algorithm is an algorithm that implements a function by calling itself in a controlled
way. The general process of a function calling itself is called recursion. Recursion is an
extremely powerful computing technique, but can be confusing for beginning programmers (and
sometimes even for experienced programmers!). However, once you learn to “think recursively”
there are a huge number of problems that have natural recursive algorithms or recursive ways
of expressing a solution. In computer science there are problems for which recursion leads to
highly efficient algorithms; there are also problems for which recursion is the only readily
apparent way to solve the problem; there are important data structures that are recursively built;
and there are powerful algorithmic techniques like dynamic programming in which the first step
is to recursively characterize the solution to the problem. All this is just to point out how
important and central recursion is to computer science – while you may not be particularly
comfortable with recursion after the light coverage in this class, if you take more computer
science classes this concept will keep coming up over and over. You will eventually (hopefully!)
gain a deeper understanding of how to use recursion, and in this lab you will start your journey
to understanding recursion by doing some basic and carefully guided examples.

We start by demonstrating the concepts of recursion and the techniques for designing a
recursive algorithm with a simple example: computing the factorial function. As you hopefully
remember from math classes, n factorial (written n!) is the product of the first n positive integers:

n! = 1 * 2 * 3 * 4 * … * (n-1) * n

So looking at a few examples, 2! is 2, 3! is 6, and 5! is 120. The factorial function exhibits a
property that we call self-similarity: the solution for n! “contains” solutions for smaller versions of
the same problem. Look at the formula above – if we simply leave out the last term (the last

1 Lab Exercises for “The Beauty and Joy of Computing”
Copyright © 2012-2014 by Stephen R. Tate – Creative Commons License
See http :// www . uncg . edu / cmp / faculty / srtate / csc 100 labs for more information

http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs
http://www.uncg.edu/cmp/faculty/srtate/csc100labs

factor of n), then we have (n-1)!. In fact, this shows us that for large enough n (“large enough”
so that there are enough terms in the formula to split it like this), we see that n! = (n-1)! * n.

So for “large enough” n, we can write the solution for n! using the solution for (n-1)! and a small
amount of additional work (one additional multiplication). What does “large enough” mean? In
this case, it just means that n is at least 2 (so there is something to the left of the last term). If n
is not “large enough”, then we can just write down the answer. In this case, if n=1, we can just
say that n! is 1.

This is how recursion always works: we consider two cases, depending on whether the input is
large enough to express the answer in terms of solutions to smaller problems, or whether it is so
small that we can’t break it down but can write the solution out directly. We call these the
recursive case and the base case, and identifying these two cases is the first step in designing
a recursive algorithm. Writing this out explicitly, for the factorial problem we might start like this:

● Recursive case: When n ≥ 2, we know that n! = (n-1)! * n

● Base case: When n = 1, we know that n! = 1

Now comes the magic part: we can write out code based on these observations. First, we use
an if/else block to test whether we are in the base case or in the recursive case, and then put in
code for each case. While we described the recursive case first above, typical practice in
programming is to test for and handle the base case first, and so the result is the following
BYOB block definition to compute the factorial function:

Look carefully at the formula in the last “report” block (in the “else” part of the if/else). The
innermost block is (pN-1), which is supplied as the argument to the “factorial” function.
Assuming our recursive call magically works (and it does!), it gives (pN-1)! which we then
multiply by pN and report that value.

It’s worthwhile to trace out how this works, but it should be stressed that tracing out recursive
functions is not the right way to think about recursion! We’ll do this once, for this one example,
and once you are reassured that this actually works then never do it again! The right way to
think about recursion is just building the base case and the recursive case. Thinking about the
recursive case, just think about one step – don’t keep tracing beyond a single step to a smaller
problem, because if you think across multiple steps then you’re really missing the whole point of
recursion. That said, here’s how the factorial function defined above works – first, calling
factorial for argument 4, this is the recursive case so we end up calculating pN-1 (which is 3)
and calling factorial with argument 3. This calls factorial of 2, and finally that calls factorial of 1.
We stop making recursive calls at this point since we’re in the base case. Our functions now

return, and at each step multiplying the result of the recursive call with the value of pN at that
level. We can visualize this as follows:

Let’s reason about why this works. We start off by asking, if I call “factorial” with an argument of
4, does it give the right answer? Well, we compute factorial of 3 and multiply that by 4, so as
long as factorial of 3 is computed correctly then we get the right answer. Do we compute
factorial of 3 correctly? Well, to compute factorial of 3 we compute factorial of 2 and multiply that
by 3, so as long as we compute factorial of 2 correctly then factorial of 3 is correct (which will
make factorial of 4 correct!). Do we compute factorial of 2 correctly? Well, to compute factorial
of 2 we compute factorial of 1 and multiply that by 2, so as long as we compute factorial of 1
correctly then factorial of 2 is correct (which will make factorial of 3 and hence factorial of 4 both
correct). Finally, do we compute factorial of 1 correctly? Yes! That’s our base case, so the
correct value is simply filled in – so all intermediate results are correct, giving us the correct
value for 4 factorial. That was a somewhat tedious argument, but if you think about how the
correctness builds from smaller cases to bigger cases it should make sense. In later computer
science classes you’ll see a way to formalize this kind of argument in what is called a proof by
induction – a powerful way of reasoning about the correctness of statements and algorithms.

Let’s go back and look at this specific example and think about the design process for coming
up with this recursive algorithm. In designing a simple recursive function, we need to design the
two specific parts of the recursion, which requires answering the following questions:

1. What is the recursive step? The recursive step will do three things: break down the
problem to one or more smaller versions of the same problem, called the subproblem(s)

(we’ve only seen a single subproblem in our example, but there might be more, like in
Activity 3 below); make the appropriate recursive call(s); and process the results of the
recursive calls to produce our answer. In the factorial case, the only computation that
had to be done to “break down” the problem of computing n factorial to a smaller sub-
problem was to compute n-1; then we made the recursive call; then we did the post-
recursion processing, which in this case was just taking the result of the recursive call
and multiplying by n. In deciding on the recursive step, it is best to picture in your mind a
value of n that is not very small – for example, don’t think about recursion when n is 2 –
think about how the recursion works when n=10 or n=100.

2. What is the base case? The recursive step should result in a recursive call with a smaller
argument than the original argument – for example, in the factorial problem we make a
recursive call with argument n-1. Each recursive step makes the input smaller and
smaller, and so at some point you reach the smallest possible problem, which you must
solve directly. This is the base case, and there are two parts to the base case. First, what
defines the base case and how can you test if your input falls into the base case rather
than the recursive case? In the factorial example, we are writing a factorial function that
handles inputs n for all n ≥ 1, so the smallest possible input is n = 1, which defines the
base case (and gives the test for being in the base case). The second thing we must
figure out is what the value of the function is in the base case. For the factorial problem,
when n = 1, we know that n! is 1, so that’s our answer.

Just like iteration over lists, there is a pattern we can use for basic recursion, which looks like
this:

Lets do one more numerical example of recursion, which will be very similar to what you will do
in activities 1 and 2 below. BYOB does not have a block to compute powers, and we’d like to be
able to raise numbers to powers that are non-negative integers. In other words, we are
interested in being able to compute things like 23, 32, 29, or even (2.5)3 or (1.25)8, but not
something with non-integer exponents like 51.5. Expressed as a general formula, we want to
compute xy, where y is an integer. Let’s ask and answer the questions given above, and then we
can fill in our code pattern to get the final recursive algorithm.

What is the recursive step? One thing that makes this problem a little more difficult is that we
have two numbers that are in the input, so we have to decide whether to make one of them
smaller or both of them smaller in the recursion (some recursive solutions are even more

complicated than this, but you would never need anything complex for this class). In this case,
there is a clear answer if you think about powering as repeated multiplication (so x4=x*x*x*x):
we will do one less multiplication for the sub-problem, so we reduce the exponent. Now we need
to write out xy in terms of xsomething smaller than y. There’s actually more than one way to do this, but for
now we’ll just think of “peeling off” one multiplication so that we use xy = x * xy-1. This has defined
our recursive step! The pre-recursion processing is computing y-1, the recursive call is
computing xy-1, and the post-recursion processing is multiplying x by the result of the recursive
call.

What is the base case? In this situation, we are computing powers in which the exponent y gets
smaller and smaller, so we ask “What is the smallest value of y for which this problem makes
sense?” Since we said above that the power will be a non-negative integer, the answer in this
case is y = 0 – we might ask what x0 is for some x, and we can in fact easily answer that since
x0 is 1 for all values of x (let’s ignore the slightly strange case of 00). So now we have answered
this question: we can tell if we’re in the base case by testing if y = 0, and we can handle the
base case by reporting 1.

Now we plug our answers into the pattern to get the following final recursive algorithm definition:

This is our final recursive function to compute powers. Testing it out with some simple values,
we see that it works quite well!

Self-Assessment Questions

Use these questions to test your understanding of the Background reading. Answers can be
found at the end of the lab exercise.

1. Back in Lab 4, one of the samples we looked at was creating a loop to add numbers in a
particular range. Consider a simplified version of this problem, where we always start at
1, and so we create a block named “sum of first (pN) positive integers” to add up
1+2+3+...+pN and report the answer (defined for pN ≥ 1). If we wanted to compute this
recursively, what is the base case, and what is the value to report in the base case?

2. What is the recursive case, and what is the computation we perform in the recursive
case?

3. Put the answers to questions 1 and 2 together to write a recursive block definition for this
problem.

4. If we execute this script with an argument of 15 (in other words, we call “sum of first (15)
positive integers”), what is the total number of recursive calls that are made?

5. Consider the following block definition:

What will this predicate block report when called with “mystery test (3)”? What about
“mystery test (6)”? What about “mystery test (8)”?

6. (Warning: This question requires some good mathematical intuition – don’t let that scare
you away from trying to answer it, but don’t feel too bad if you don’t get this one.)
Describe in simple terms what the predicate in question 5 is testing.

Activities (In-Lab Work and Post-Lab Bonus Activity)
Activity 1: Early microprocessors in 1970’s and early 1980’s, like the Intel 8080, Motorola 6800,
and early Sun SPARC processors, did not include hardware or instructions to multiply integers,
so programmers supplied functions to do multiplication using an algorithm made out of simpler
operations. While things are much simpler today since microprocessors are more powerful, this
problem illustrates some important aspects of recursion, so we’ll look at it in this activity.
Practically identical issues arise in modern code for doing large modular exponentiations in
cryptography, but we’ll focus on the simpler setting of multiplication for this lab.

In the pre-lab reading we treated powering as repeated multiplication, and in this activity we will
do something very similar but treating multiplication as repeated addition. For example, if we
want to compute x*4, we can write this as x+x+x+x, accomplishing the multiplication with four
additions. In general, if we are interested in computing x*y, where y is a non-negative integer,
we can write x*y = x*(y-1) + x. This defines our recursive step. What you are to do in this activity
is write a “times1” reporter block that implements this recursive algorithm (note the 1 in the
name – we’ll make a “times2” in Activity 2, so naming the blocks like this will keep them
separate). The following picture shows the block definition with the recursive part filled in:

You need to think about the base case: what is the appropriate base case (what value of y), and
what should you report in the base case? Once you have written this code, test it on some

simple values and convince yourself that it works. Save your final code in a file named Lab9-
Activity1.

Activity 2: In this activity, we’ll consider a different way to handle the recursive case. The time
complexity of a recursive algorithm depends strongly on how much we reduce the problem at
each recursive step, which determines how fast we can reach the base case, and just
decreasing it by one is not a particularly fast way to get to the base case. For multiplication, it
turns out that we can do a recursive case that roughly halves the parameter y at each step,
rather than just reducing it by 1. So, for example, if we were to call this with y = 10,000, then our
solution in activity 1 will make a recursive call with y=9,999 and then 9,998, and then 9,997 and
so on; however, this new technique will make a recursive call with y=5,000 and then 2,500, and
then 1,250 and so on. Note that it looks like we’re multiplying and dividing in the following
algorithm, even though we said we couldn’t multiply – isn’t that a violation of our restrictions?
Not in this case: all multiplications are doing multiplication by 2 and divisions are dividing by 2 –
these are really simple operations on binary numbers, just like multiplying and dividing by 10 are
trivial in decimal. Multiplying a binary number by two just shifts all the bits left one position, and
dividing by two shifts all the bits to the right, so these operations are allowed.

The key to this is to think about what you can do if y is even. In that case, we notice that x*y =
2*(x * (y/2)). So if we made a recursive call to compute x * (y/2) and saved that result in a
variable, we could multiply that by two (or add that variable to itself) to get 2 * (x * (y/2)) = x*y.
Note that if you add the recursive call to itself, it is extremely important to use a variable – if you
were to make two recursive calls to add together, rather than using a variable, this would be
slower. Really, really, really slower. Take my word for it.

What if y is odd? In that case, we can reduce y by 1 so that it’s even, pull the same trick to get
2*(x * (y-1)/2) = x*(y-1) = x*y - x, where x * (y-1)/2 is a recursive call, and add x to the result to
get the answer that we need. In other words, when y is odd, we can compute 2*(x * (y-1)/2) + x
= x*y. If we write this multiplication algorithm out as mult(x,y), then the way to express this as a
mathematical expression is as follows:

mult(x,y) = 2 * mult(x, y/2) if y is even;
mult(x,y) = 2 * mult(x, (y-1)/2) + x if y is odd.

Your job is to take that description and formula, and fill in the missing pieces in this code for
“times2”:

Make sure you test this thoroughly to make sure it works correctly for a variety of y values (at
the very least, make sure you try some even and some odd values). Once you’ve got it working,
you should compare the time required by the “times1” algorithm from Activity1 and the “times2”
algorithm from Activity 2. Use the timing techniques from Lab 6 to see how long these
algorithms take to multiply 1000 by 1000, and record these times so you can report them in the
lab quiz questions.

Save your final project, including the timing code for both algorithms, as Lab9-Activity2.

Activity 3: There are several cool looking self-similar shapes that people have come up with
over the years, and recursion is a great way to draw these figures. This is more complex than
the previous activities, but if you take it a small step at a time you should be able to do this. The
shape you’re going to draw is a Sierpinski triangle, which looks like this (the red and green
outlines are not part of the drawing, but are marking parts of it for this discussion):

So what exactly is a Sierpinski triangle? A Sierpinski triangle is a triangle made by drawing three
smaller Sierpinski triangles and placing them next to each other as shown: two side by side and
one on top of those two. In the diagram, the three smaller Sierpinski triangles are outlined in
green, and after combining they make a larger Sierpinski triangle, outlined in red. Think how

strange this definition is: To draw a Sierpinski triangle, you draw three Sierpinski triangles.
That’s a recursive definition! To draw this, you will create a BYOB block that will be used
something like this (these are in fact the exact parameters that created the drawing above):

The parameters give the length of a side of the Sierpinski triangle (320 in this case) and the
coordinates of the lower left corner of the triangle ((-160,-160) here). The remaining “levels”
parameter says how many recursive calls to make drawing Sierpinski triangles – this one makes
7 recursive calls, making 7 levels of Sierpinski triangles.

The recursion will use the “levels” parameter, with the base case being a 1 level Sierpinski
triangle, which looks like this:

That’s right, a 1-level Sierpinski triangle is just a regular equilateral triangle, “len” units per side.
Your first task is to implement this simple base case. Here’s what your code needs to do, written
out in text (your job is to turn this into a BYOB script): raise the pen up, go to the specified (x,y)
coordinates, put the pen down, draw by moving up and to the right (figure out the angle!) for
“len” steps, turn 120 degrees and move another “len” steps, turn 120 degrees and move another
“len” steps. Get this code working reliably before moving on: make sure you can draw at
different sizes and different locations. This script is the base case of the “draw sierpinski” block,
and the condition for the base case is “levels = 1” – make sure you put this in the basic
recursion pattern that we have been using for all of our examples and activities.

Next, do the recursive case. The recursive case is exactly three recursive calls that each draw a
Sierpinski triangle with side length “len/2” and with “levels-1” levels. You have to figure out the
coordinates for each triangle, but here’s a hint: the one on the lower right is drawn by this block:

The only tricky coordinates are the one on top. You have to use some basic trigonometry to
figure out this location – try to figure it out yourself, but if you can’t figure it out look at the
solution at the end of this handout.

Once you think you’ve got the three recursive calls correct, test it! The two pictures below show
a 2-level Sierpinski triangle (on the left) and a 3-level triangle (on the right):

If you have any bugs in the recursive case, they’ll show up in the 2-level triangle, which should
just stack three simple triangles together in the proper locations.

Once you’ve got this working, save your project as Lab9-Activity3.

Activity 4: The following extra credit challenge does not need to be turned in during lab time. It
can be turned in at any time before next week’s lab, and is worth up to 40 points extra credit. It’s
not easy, but if you take it a step at a time you should be able to do it! Here’s the problem: given
a list of coin values, and an amount you need to make change for, how many different ways are
there to make change for this amount? For example, the list of coin denominations for US coins
up to a dollar would be the following list:

Your goal is to make a reporter block so that you could, for example, count the number of
different ways you could make change for one dollar. Using this block could look something like
this:

The first argument is the amount you want to make change for (here 100 cents, or one dollar),
and the last parameter is the list of coin denominations. The middle parameter is what controls
the recursion, and essentially says that you are allowed to use any of the first 6 coin types
(since there are exactly six coin types overall, you can use any coin type in this example). If you
were to call this with a 1 for the middle argument instead of a 6, then it would be the number of
different ways you could make change for a dollar using only pennies (and there’s only one way

to do that: you have to use 100 pennies!). If you called this with the middle parameter being 2,
then you can use pennies and/or nickels, and there are 21 different ways to do this (you can use
0 nickels, 1 nickel, or any number of nickels up to 20, making up the remainder of the dollar with
pennies).

Hints: The middle parameter controls the recursion, so concentrate on this. Make a base case
where you directly handle the case when the middle parameter is 1. Then figure out the
recursive step: if you can use the first n coin types, you want to loop through every possibility for
the number of coin type n can be used, and recursively call to make up the remainder of the
amount with the first n-1 coin types. This is quite challenging for someone new to recursion, but
is the kind of thing that is very natural once you gain some experience with this!

If you get this working, save it as Lab9-Bonus, and submit separately from the main lab
assignment. In addition to writing the code, use your script to figure out how many ways there
actually are to make change for a dollar using the US coin denominations. Then create a
second list with European coin denominations (1, 2, 5, 10, 20, 50, and 100) and compute how
many ways there are to make change for 1 Euro – you might be surprised by the answers!

Submission
In this lab, you should have saved the following files: Lab9-Activity1, Lab9-Activity2, and Lab9-
Activity3. Note that if you did your definitions correctly, then these three activities should be
named separately and all are there in your Lab9-Activity3 file. If that’s the case, then you only
need to submit that one file. Turn these in using whatever submission mechanism your school
has set up for you. If you do the bonus problem (Activity 4) then you will submit this separately.

Discussion (Post-Lab Follow-up)
Time Complexity of Recursive Algorithms: How do you figure out the time complexity of a
recursive algorithm? In our earlier discussion of time complexity, it was primarily about
recognizing loops and looking for loops inside of loops. With recursion, operations are repeating
not by loops and iteration, but through recursive calls. If the code for a recursive algorithm
includes multiple recursive calls (like the Sierpinski triangle activity which had 3 recursive calls),
then the analysis uses a technique called “recurrence equations” – you learn about those in
later classes, and don’t need to worry about that here. We’ll just think about the simplest case
here, where there is a single recursive call and a constant amount of additional work, like in
Activities 1 and 2. In those cases, the time complexity is determined entirely by the total number
of recursive calls that are made when executing the program. If you are processing a list with n
items, and you make a recursive call for a list of size n-1, then over the course of execution
there will be a call for size n, one for size n-1, one for size n-2, etc., for a total of n recursive
calls. In this case, the time will be c*n for some constant c (depending on the “constant amount
of work” that’s done in addition to the recursive calls), so it is linear time. In other algorithms, the
recursion might half the size of the list with each recursive call, so there’s a recursive call for
size n, one for size n/2, one for size n/4, etc. If you work out the math for this, you’ll see that the
total number of recursive calls is log2n (that’s the base 2 logarithm of n), so in this case the time
complexity is logarithmic time (much faster than linear!).

Self-Similar Shapes: (Note – you’re not responsible for this, but it’s cool stuff nonetheless!)
There are lots of self-similar diagrams that have been defined over the years, with the two most
famous being the Sierpinski diagram that you drew for Activity 3 and the Koch curve (sometimes
called the Koch snowflake). Look this up on Wikipedia and you’ll see a cool animation that
zooms in repeatedly on a portion of the snowflake and you see an infinitely detailed snowflake
emerge in this animation. The famous diagrams are all very regular and structured, but you can
in fact make diagrams that have some irregularity but use the same rules on different scales,
producing self-similar but irregular diagrams with infinite resolution. A lot of game engines use
this kind of technique to generate things like game maps, where coastlines (or mountains) are
curves that can be generated algorithmically, at whatever “zoom” level you want, and you
always have as much resolution as you need.

Terminology
The following new words and phrases were used in this lab:

● base case: the simplest and smallest case in a recursive algorithm, that is handled
directly rather than making calls to smaller versions of the problem

● proof by induction: a way of reasoning that builds up the truth of a statement (such as an
algorithm working correctly) based on the truth of smaller statements that it depends on

● recursion: the process of defining something in terms of itself
● recursive algorithm: an algorithm that implements a function by calling itself
● recursive case: the part of a recursive algorithm that calls itself on smaller inputs

Solution To Sierpinski Coordinates
In Activity 3, you had to figure out (x,y) coordinate so that you could place the three recursive
Sierpinski triangles. The first step is to figure out the height of the triangle, given the “len”
parameter – consider this picture:

Figuring out the height is a basic trigonometry problem, using a sine: height = len * sin(60).
Using a calculator to find the sine, we find that the height is approximately 0.866*len. Now that
you know the height of the overall triangle, the small “sub-triangle” at the top should have a y
coordinate that is half the way up this height, so add half the computed height to the y
coordinate of the big triangle, and you get the y coordinate of the top small triangle. With this,
you should be able to place all three recursive triangles.

Answers to Pre-Lab Self-Assessment Questions
1. The base case always corresponds to the smallest input value, and since this problem is

defined for pN ≥ 1, the base case is when pN=1. In this base case the block should
report 1 as the sum (the sum of the first 1 positive integer is 1).

2. The recursive case is when pN > 1, and in this case we will recursivley solve the
problem for a slightly smaller value of pN (in other words, for pN-1). The recursive call
will give the sum of 1+2+...+(pN-1), and so we need to add pN to this to bring the sum
up to the first pN positive integers. In other words, in the base case we want to compute
“sum of first (pN-1) positive integers” + pN.

3. Here is the BYOB script for this recursive block definition:

4. Let’s consider some small values of pN and look for a pattern. If we call this with an
argument of 1, we are in the base case and so no recursive calls are made. If we call it
with an argument of 2, then we make one recursive call – in that recursive call the
parameter is 1, which is the base case, so we only make the one recursive call when
called with an argument of 2. When called with an argument of 3, we make a recursive
call with argument 2, which makes a recursive call with argument 1, and then we stop
after those two recursive calls. So with argument 1 we make 0 recursive calls; with
argument 2 we make 1 recursive calls; and with argument 3 we make 2 recursive calls.
This pattern repeats, and so with parameter pN we make pN-1 recursive calls. Therefore
when calling “sum of first (15) positive integers” the program makes 14 recursive calls.

5. If we call “mystery test (3)”, the first “if” test will see of the parameter pN is odd – since it
is odd, this will immediately report false. If we call with “mystery test (6)”, then the first
test fails (since 6 is not odd), and we fall down to the second “if” test – since pNum is not
2, we go into the recursive case and call “mystery test (3)” – we just saw that this returns
false, so that means that “mystery test (6)” will also return false. Finally, if this is called
with “mystery test (8)” we will have a recursive call for “mystery test (4)”, which will in
turn have a recursive call for “mystery test (2)” – since this last recursive call reports

true, and this is passed on directly through each of the higher-level recursive calls, the
result of “mystery test (8)” will be true. So to summarize:

“mystery test (3)” reports false
“mystery test (6)” reports false
“mystery test (8)” reports true

6. This block reports true when the input is a power of two that is greater than or equal to 2
(in other words, when the number pN can be written as pN=2k for some integer k ≥ 1).
Why is this? Looking at the code, it reports false for all odd values, and for all values that
can reach an odd value > 2 when you repeatedly divide by 2. The only values that can
be repeatedly divided by 2 without reaching an odd number before reaching 2 are the
powers of 2.

	Objectives
	Background (Pre-Lab Reading)
	Self-Assessment Questions
	Activities (In-Lab Work and Post-Lab Bonus Activity)
	Submission
	Discussion (Post-Lab Follow-up)
	Terminology
	Solution To Sierpinski Coordinates
	Answers to Pre-Lab Self-Assessment Questions

