
Reductions, Self-Similarity, and Recursion

Relations between problems

Notes for CSC 100 - The Beauty and Joy of Computing
The University of North Carolina at Greensboro

Reminders

Blown to Bits: Start reading Chapter 4

Homework 3:
● Read assignment carefully
● Start exploring possible topics

Lab 9: Look for Pre-Lab reading!

Getting to places from my house...

Now I buy a new house!

Get anywhere by first going to old house

Things to notice...

I can go anywhere from my new house by
1. Going to my old house
2. Going to my destination from there

What I want to do...

What I know how to do...

Things to notice...

I can go anywhere from my new house by
1. Going to my old house
2. Going to my destination from there

What I want to do...

What I know how to do...

Terminology: I have reduced the problem of traveling from my new house to
the problem of traveling from my old house.

Important points:
● Solution is easy to produce (often easier than direct solution)
● Solution is easy and compact to describe
● Solution may not be the most efficient to execute

Things to notice...

I can go anywhere from my new house by
1. Going to my old house
2. Going to my destination from there

What I want to do...

What I know how to do...

Question: Is a reduction a property of problems or algorithms?

Things to notice...

I can go anywhere from my new house by
1. Going to my old house
2. Going to my destination from there

Problem

Reductions are between problems
● The reduction operation is an algorithm
● Abstraction: We don't care how the "known algorithm" works!

Problem

The Basics
A reduction is using the solution of one problem (problem A) to solve
another problem (problem B).

We say "problem B is reduced to problem A".

Reductions are a fundamental "big idea" in computer science
● Lots of types of reductions - you could spend a lifetime studying this!

● Our reductions use a small amount of work in addition to a constant
number of calls to problem A.
○ As a result, can say problem B is not much harder than problem A
○ True even if we don't know the most efficient way to solve problem A!

An example from Lab 4
To find least common multiple (LCM):

An example from Lab 4
To find least common multiple (LCM):

But if you already have GCD

What have we done? We have reduced the problem of computing LCM
to the problem of computing GCD.

An example from Lab 4
To find least common multiple (LCM):

But if you already have GCD

What have we done? We have reduced the problem of computing LCM
to the problem of computing GCD.

So: LCM is no harder computationally than
GCD. And remember... Euclid's algorithm is
a very efficient GCD algorithm!

Not a great
algorithm...

Similarity and Self-Similarity

Reducing LCM to GCD identifies similarities between the two
problems.

Many problems are structured so that solutions are "self-similar"
- large solutions contain solutions to smaller versions of the
same problem!

Example: Recall sum of list items as parallel algorithm - each
thread solved a smaller version of the same problem!

An algorithm can solve a large problem by breaking it down to
smaller versions of the same problem - this is called recursion.

Example: Adding up a list

7 2 3 1 5 4 3 2 5 8 6 8 3 5 3 2 2 4 2 1

Sum of 20 items (= 76)

Sum of 19 items (= 75)

+

76

Example: Adding up a list

7 2 3 1 5 4 3 2 5 8 6 8 3 5 3 2 2 4 2 1

Sum of 20 items (= 76)

Sum of 19 items (= 75)

+

76

def sum_of_first(data, size):
if (size == 0):

 return 0

subProblem = sum_of_first(data, size-1)
return subProblem + data[size-1]

def sum_of_first(data, size):
if (size == 0):

 return 0

subProblem = sum_of_first(data, size-1)
return subProblem + data[size-1]

Breaking it down

Base case: Handling smallest case directly

Recursive case: Solving a smaller
version of the same problem.

Constant amount of work to use answer
from subproblem to compute answer to
overall problem.

def sum_of_first(data, size):
if (size == 0):

 return 0

subProblem = sum_of_first(data, size-1)
return subProblem + data[size-1]

Breaking it down

Base case: Handling smallest case directly

Recursive case: Solving a smaller
version of the same problem.

Constant amount of work to use answer
from subproblem to compute answer to
overall problem.

def sum_of(data):
return sum_of_first(data, len(data))

Driver function: sets up first call to recursion

Workhorse Function

Driver Function

Another example: Sorting

"Selection sort" from algorithms lab:

def sort(data):
 for left in range(len(data), 1, -1):
 maxPos = max_pos_from_first(data, left)
 swap(data, maxPos, left-1)

Another example: Sorting

"Selection sort" from algorithms lab: Recursive version:

Base case: One item - nothing to do!

Setting up recursion: Swap max item to last position

Recursion: Sort all the rest

def sort(data):
 for left in range(len(data), 1, -1):
 maxPos = max_pos_from_first(data, left)
 swap(data, maxPos, left-1)

def recursive_sort(data, size):
 if (size > 1):
 maxPos = max_pos_from_first(data, size)
 swap(data, maxPos, size-1)
 recursive_sort(data, size-1)

Note the elegance of the recursive description: “If there’s something to sort, put
the largest item at the end and then sort the rest.”

Summary

Finding relations between problems can simplify solutions:
● Sometimes relations between different problems (reductions)
● Sometimes relation to smaller version of the same problem

(recursion)

What you should know:
● Recognize reductions and recursion
● Understand the basic principles

We will explore this more in a lab!

