
Abstraction

The Key to Managing Complex Processes

Notes for CSC 100 - The Beauty and Joy of Computing
The University of North Carolina at Greensboro

Reminders: What you should be doing!

Before Lab on Friday:
● Do Pre-Lab work for Lab 3

Reading:
● Make sure you participate in online discussion of Blown to Bits

Chapter 1 (within the next week)

Class Exercise

In groups of 3-5 students:

Make a list of steps you take in the morning
from waking up to being ready to go to
school or work.

Obviously everyone might do things a little differently,
but come up with a sequence of steps you can all agree
on.

Forms of Abstraction
Descriptions and Example from Dan Garcia, UC Berkeley

● Detail removal
"The act or process of leaving out
of consideration one or more
properties of a complex object so
as to attend to others."

● Generalization
"The process of formulating
general concepts by abstracting
common properties of instances."

Henri Matisse "Naked Blue IV"From Dan Garcia, UC Berkeley

Question: What is this?

Detail Removal Example
Possible answers to previous question

A detailed answer:
A Dell Insprion Desktop, model I620-1996BK, with a 3.3 GHz Intel
i3 processor, 4 GB or RAM, 500 GB 7200 rpm hard disk, Intel HD
Graphics 2000, USB optimal mouse, and pre-installed with
Windows 7 Home Premium (64 bit).

A Dell Inspiron Desktop with 4 GB of RAM and 500 GB hard disk.

A computer.

Important point: Different levels of detail are suitable in different situations. An
office designer doesn't need to think of this as anything other than "a computer"
that needs to be placed in the room - details are superfluous and distract from
what the designer is trying to do!

Just a few important technical details:

The most basic description:

Detail Removal
A programming example

A program exists in many different levels of detail:
A high-level language (e.g., C++):

x = (y + 4) * z - 3;

Assembly language (readable but detailed):

movl -4(%ebp), %eax
addl $4, %eax
imull -8(%ebp), %eax
subl $3, %eax
movl %eax, -12(%ebp)

Machine language (what is really executed):

01000101 11111100 10000011 11000000 00000100
00001111 10101111 01000101 11111000 10000011
11101000 00000011 10001001 01000101 11110100
...

Compiler
produces...

Assembler
produces...

Aren't you glad you don't
have to deal with this just
to create a program?

Question: If automated
tools do this translation,
why are multiple layers
of abstraction useful?

Another layering example
Simplified network model (OSI model has 7 layers).

Each layer interacts with the one below it which has is less capable
(less abstraction) than the one above.

Application Layer

Transport Layer

Network Layer

Data Link Layer

“I want to retrieve the web page at http://www.google.com/”

“I want to connect to 74.125.136.105 and create a channel
 to send and receive bytes.”

“I want to send this small packet of bytes to 74.125.136.105”

“I want to send this small packet of bytes to this other computer
 that I am directly connected to.”

Some Quotes

Recall quote from Alan Perlis from last lecture:

“A programming language is low level when its programs require attention
to the irrelevant.”

Another quote from Alfred North Whitehead (famous
mathematician and philosopher from the early 1900’s):

“Relieving the brain of all unnecessary work, a good notation sets it free to
concentrate on more advanced problems, and in effect increases the
mental power of the race.”

Detail Removal
Snap! Example

This:

Really does something like this:

(and even that is simplified...)

Are the blocks provided by Snap! the only
abstractions you will ever need?

NO! In this week's lab we'll see how to define
our own blocks to make our own abstractions!

Generalization Example

● You have a farm with many kinds of
animals

● Different food for each
● You have directions that say

○ To feed dog, put dog food in dog dish
○ To feed chicken, put chicken food in

chicken dish
○ To feed rabbit, put rabbit food in rabbit dish
○ ...

● How could you do better?
○ To feed <animal>, put <animal> food in

<animal> dish
From Dan Garcia, UC Berkeley

Generalization in Programming
Snap! example

Think about this block:

Snap! could have provided a block that just pointed up...
● and one that just pointed down...
● and one that just pointed right...
● and one that just pointed left...

Instead have one generalized block, which is
● easy to think about and use,
● less worry after the initial development effort, and
● more powerful (can point at any angle).

Examples in Snap!

As time allows, we will spend the rest of the class doing
examples in Snap!

