
Data Representation

Interpreting bits to give them meaning

Part 1: Numbers, Bases, and Binary

Notes for CSC 100 - The Beauty and Joy of Computing
The University of North Carolina at Greensboro

What you should be working on...

Start:
● Homework 1: handout today - due Monday, Sept 18
● Reading Blown to Bits Chapter 2 - reflection due Mon, Sept 11

Before Friday:
● Lab 4 Pre-Lab work (shorter than previous - use time to practice!)

What is a number?

Question: You've been working with numbers (almost) all
your life - what are they?

Example: What is the number 6?

6

1102six seis

Brief Side-Track - Characters and Unicode

Everything stored in a computer is a number - how do you store text?

Remember this?
Koan 1: It’s All Just Bits.

65
Renderer

Code+font+size+style

The
letter “A”

Stored in
computer

The letter “A”Want to
store

Draws

Perceives

Sees

Brief Side-Track - Characters and Unicode

Everything stored in a computer is a number - how do you store text?

Remember this?
Koan 1: It’s All Just Bits.

65
Renderer

Code+font+size+style

The
letter “A”

Stored in
computer

The letter “A”Want to
store

Draws

Perceives

Sees

Correspondence between
number codes and letters is
standard (everyone must
agree!). Universal standard
is called Unicode.

Strings and Rendering Numbers
A character is a displayable symbol (letter, digit, punctuation, …)
A string is a sequence of characters

Storing/displaying the string “Hello!”:

Character: H e l l o !

Unicode: 72 101 108 108 111 33

Character: 4 7 2 3

Unicode: 52 55 50 51

Storing/displaying the number 4723:
So to display a number, the computer:

1. Computes digits
2. Converts to Unicode vals
3. Sends those to display with

font/size/color/style information
4. The display draws shapes

You (usually) don’t to worry about
this, because….

Strings and Rendering Numbers
A character is a displayable symbol (letter, digit, punctuation, …)
A string is a sequence of characters

Storing/displaying the string “Hello!”:

Character: H e l l o !

Unicode: 72 101 108 108 111 33

Character: 4 7 2 3

Unicode: 52 55 50 51

Storing/displaying the number 4723:
So to display a number, the computer:

1. Computes digits
2. Converts to Unicode vals
3. Sends those to display with

font/size/color/style information
4. The display draws shapes

You (usually) don’t to worry about
this, because….

Abstraction!

Decimal Representation

Most common written representation of numbers is
"decimal notation":

51862

102

(100)
104

(10000) 103

(1000)

100

(1)101

(10)

Question: Why powers of ten?
 Equivalently, why are there 10 different digits?

"Representation" is the
converse of "Abstraction"

Makes abstractions
concrete

Decimal Representation

51862

Divide by 10: Quotient
gives all but

last digit

Remainder
gives last digit

How can we mathematically extract digits from a number?

This is like a division operation, but throws
away any remainder or fractional part - not
provided by Snap! - think about how to make it!

“mod” gives the remainder after a division

Binary Representation

The powers used in the representation (also, number of different "digits") is
called the base.

● "Decimal" is base 10
● "Binary" is base 2

1 0 0 1 1

24

(16)
20

(1)
22

(4) 21

(2)
23

(8)

1 * 24 + 0 * 23 + 0 * 22 + 1 * 21 + 1 * 20 = 16 + 2 + 1 = 19

This number is written in binary

 Instead of "digits" have "bits"

Numbers below the
dashed line are all
written in decimal
(because they're for
our benefit).

Converting decimal to binary
Algorithm: we keep dividing by the base (2), recording remainders and keeping
quotients.

First bit found is
last bit in binary
representation.

Using subscripts to denote base:
4310 = 1010112

Converting decimal to binary
Algorithm: we keep dividing by the base (2), recording remainders and keeping
quotients.

First bit found is
last bit in binary
representation.

Using subscripts to denote base:
4310 = 1010112

How would you
implement this

in Snap!?

Number to Representation (base ≤ 10)

Snap! Reporter block: number in, string out...

This is new! More about script
variables in this week’s lab.

Examples from earlier slides

Link to code....

Converting decimal to binary
Just like the Snap! code, we keep dividing by the base (2), recording
remainders and keeping quotients.

Practice problems:

 110 = ________ 2
 610 = ________ 2
 810 = ________ 2
 1210 = ________ 2
 2310 = ________ 2
 3110 = ________ 2

Using subscripts to denote base:
4310 = 1010112

Converting binary to decimal

Keep a position and a value, and at each step move
position to right, multiply value by 2 and add the new bit.

So 1011012 = 4510

Some terminology:

Leftmost bit is "most
significant bit" or "msb"

Rightmost bit is "least
significant bit" or "lsb"

http://span.uncg.edu/snap#open:http://span.uncg.edu/snap/code/Lect6-BaseConversion.xml

Converting binary to decimal

Keep a position and a value, and at each step move
position to right, multiply value by 2 and add the new bit.

So 1011012 = 4510

Practice problems:

 112 = ______ 10
 10012 = ______ 10
 110112 = ______ 10
 100012 = ______ 10
 111112 = ______ 10
 1010112 = ______ 10

Counting in binary without converting

Picture an odometer with only two values, 0 and 1

When any wheel goes from 1 to 0, turn the one to the left

Why binary?

In electronics, you can measure voltages on wires
● Consider 8 wires
● Each with at either 0 volts or 5 volts

Interpreting 0V as 0, and 5V as 1, get: 001010112 (= 4310)

Voltages can turn on/off switches to create logic circuits

For Future Classes

Some questions for later classes:

Are there useful bases other than binary?

How are pictures or sound clips represented?

Until then:
Practice with this! Binary is the basic language of electronic
computers, so if you want to understand modern computers you
must be comfortable with their language.

And to answer students’ favorite question:

Yes, this will be on the test.

