Data Representation

Interpreting bits to give them meaning

Part 2: Hexadecimal and Practical Issues

Notes for CSC 100 - The Beauty and Joy of Computing The University of North Carolina at Greensboro

Class Reminders

Assignments:

• Assignment 1 due in one week (Monday, September 18)

Lab Exercises:

● Review Lab 4 solutions (in Canvas) - important for Lab 5!

Blown to Bits:

● Chapter 2 discussion - contribute before Wednesday (10:00am)

From Last Time...

Key points from "Data Representation, Part 1":

- A number is an abstract idea
- Anything you can point at or write down is a *representation* of a number
- Lots of different representations for the same number:
	- Written in decimal notation (what we're most familiar with)
	- Written in roman numerals (e.g., 6 is the same as VI)
	- Written as a set of "tick marks" (e.g., 6 is the same as IIIIII)
	- \circ Written in binary (e.g., 6 is the same as 1102)
	- As a sequence of voltages on wires
- Computers work with binary because switches are off or on (0 or 1)
- Converting between number bases doesn't change the number, just chooses a different representation

Hexadecimal - another useful base

Hexadecimal is base 16.

How do we get 16 different digits? Use letters!

Hexadecimal digits (or "hex digits" for short):

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Counting - now our odometer has 16 digits:

Hexadecimal/Decimal Conversions

Conversion process is like binary, but base is 16

Problem 1: Convert 423₁₀ to hexadecimal: 423/16 = quotient 26, remainder 7 (=7 $_{16}$) 26/16 = quotient 1, remainder 10 (= A_{16}^{16}) 1/16 = quotient 0, remainder 1 $(=1)$ ₁₆)

$$
\bullet \quad \text{Reading digits bottom-up: } 423_{10} = 1A7_{16}
$$

Problem 2: Convert 9C3₁₆ to decimal: Start with first digit, 9 $9*16 + 12 = 156$ $156*16 + 3 = 2499$

• Therefore, $9C3_{16} = 2499_{10}$

Hexadecimal/Decimal Conversions

Hexadecimal/Binary Conversions

Exactly 16 hex digits, and exactly 16 4-bit binary numbers

Converting between hex and binary is easy - 4 bits at a time:

Problem 1: Convert 01110100110₂ to hexadecimal

Problem 2: Convert D49₁₆ to binary

Hex Digit List $0_{16} = 0000_2$ $1_{16} = 0001_{2}^{2}$ 2^{10}_{16} = 0010₂ $3^{16}_{16} = 0011^{1}_{2}$ $4^{16}_{16} = 0100^{2}_{2}$ $5^{16}_{16} = 0101^{16}_{2}$ $6_{16} = 0110_2$ $7^{10}_{16} = 0111_2$ 8_{16} = 1000₂ 9_{16} = 1001₂ $A_{16} = 1010^2$ B_{16} = 1011₂ C_{16} = 1100₂ D_{16} = 1101₂ E_{16}^{16} = 1110²/₂ $F_{16}^{\prime\prime}$ = 1111₂

Hexadecimal/Binary Conversions

Use of hexadecimal in file dumps

Binary is a very long format (8 bits per byte), but often data files only make sense as binary data. Hexadecimal is great for this - simple one-to-one correspondence with binary, and more compact.

Sample "file dump":

Position in file Actual binary data (written in hexadecimal) The same data, showing

character representation

Remember....

Don't get lost in the details and manipulations:

Any base is a representation of an abstract number

We are interested in working with the number, and computations are not "in a base" - the base is only useful for having it make sense to us or the computer

Practice!

You should be able to convert from one base to another.

Lots of ways to practice:

- By hand: Pick a random number convert to binary and convert back - did you get the same value?
	- This isn't foolproof: You could have made two mistakes!
- With a calculator: Many calculators (physical and software) do base conversion - check your randomly selected conversions.
- With a web site: Several web sites provide says to practice ○ For example, see <http://cs.iupui.edu/~aharris/230/binPractice.html>

Finite Length Integers

Question (a little contrived):

If a CPU has 4 single-bit storage locations for each number, what happens when you add:

$$
1111_2 + 0001_2 = _____2
$$

Finite Length Integers

Question (a little contrived):

If a CPU has 4 single-bit storage locations for each number, what happens when you add:

$$
1111_2 + 0001_2 = _____2
$$

Answer Part 1: If you did this on paper, you'd get 10000₂

Which leads to another question:

How do we store 5 bits when there are only storage locations for 4 bits?

Finite Length Integers

Question (a little contrived):

If a CPU has 4 single-bit storage locations for each number, what happens when you add:

$$
1111_2 + 0001_2 = _____2
$$

Answer Part 1: If you did this on paper, you'd get 10000₂

Which leads to another question:

How do we store 5 bits when there are only storage locations for 4 bits?

Answer Part 2: What CPUs do is throw out the 5th bit, storing 0000₂ Which means: To a 4-bit computer, $15 + 1 = 0$

Finite Length Integers

On real computers:

- This happens, but with 32-bit numbers or 64-bit numbers instead of 4.
- When things "wrap around" it actually goes to negative values... *On a 32-bit CPU: 2,147,483,647 + 1 = -2,147,483,648*

However: Some programming languages/systems support numbers larger than the hardware, by using multiple memory locations.

Let's try this!

Finite Length Integers

Finite Length Integers

First thought: Python is cool! Second thought: Don't expect something for nothing…

Let's do something pretty useless (that takes a lot of integer operations)

Problem: Compute the last 6 digits of the billionth Fibonacci number

Finite Length Integers

First thought: Python is cool! Second thought: Don't expect something for nothing…

Let's do something pretty useless (that takes a lot of integer operations)

Problem: Compute the last 6 digits of the billionth Fibonacci number

Finite Precision Floating Point

Question: How do you write out ⅓ in decimal?

```
Answer: 0.33333333333….
```
Observation: Impossible to write out exactly with a finite number of digits

The same holds in binary!

Can be written exactly $0.5 = 0.12$ $0.25 = 0.01$ ₂ $0.375 = 0.011_2$

Can*not* be written exactly $\frac{1}{3}$ = 0.01010101...₂

 $\frac{1}{6}$ = 0.001100110011... $1/10 = 0.0001100110011...$

Imagine: How hard is it to write banking software when there is no finite representation of a dime (0.10 dollars)?!?!?

Solutions people came up with:

Work with cents (integers!) or special codings (BCD=Binary Coded Decimal)

Finite Precision Floating Point

Question: How do you write out ⅓ in decimal?

Solutions people came up with: Work with cents (integers!) or special codings (BCD=Binary Coded Decimal)

Still More Data Representation for Later

Now we know all about representing numbers

But computers also deal with text, web pages, pictures, sound/music, video, ...

How does that work?