
Organizing Data

The Power of Structure...

Notes for CSC 100 - The Beauty and Joy of Computing
The University of North Carolina at Greensboro

Reminders

Lab this Friday: Lists! Remember Pre-lab work.

Blown to Bits: Online discussion for Chapter 2!

Homework 1: Due Monday
● Should have already made some significant progress!
● Submission link now available in Snap
● Last good in-class time for questions is now!

A Flood of Data
Consider the amount of data we deal with:
● Human genome: Just over 3 billion base pairs

○ Typing in 12pt on 8.5x11 paper fits 2880 characters
○ So the human genome would be over a million pages (printed

two-sided, an 86 foot high stack of paper)

● Facebook -
http://expandedramblings.com/index.php/by-the-numbers-17-amazing-facebook-stats/

○ 2.01 billion monthly active users (1.32 billion daily!)
○ Messenger+WhatsApp: Over 60 billion messages/day

■ On index cards, would be a stack 7500 miles high!
○ ... or end-to-end would stretch around the world 180 times

● Large Synoptic Survey Telescope
○ 16 terabytes (16,000,000,000,000 bytes) will be captured per day
○ Most of this data will never be seen by a human being

http://expandedramblings.com/index.php/by-the-numbers-17-amazing-facebook-stats/

“Big Data” is the “Big Thing”

What everyone is talking about...

Organizing Data

Until now in this class, we have talked about operations on
one or two numbers at a time:

Organizing Data

Until now in this class, we have talked about operations on
one or two numbers at a time:

But we might think about operations
on collections of data:

● Students in a class
● Customers of a store
● Star locations
● Messages on Facebook
● Roads in the United States

We need:
● Abstractions to think about
● Representations to implement

Abstract Data Types and Data Structures

An abstract data type is a type of data with associated operations, but whose
representation is hidden.
Example:

Type of data: Collection of student names
Associated operations: Add new student, delete student from collection,
check if student is in collection, iterate through all students in collection

I can use this collection without worrying about how
these operations are accomplished - abstraction!

A data structure is a particular implementation of an abstract data type.
● Determines efficiency of operations
● Roughly: Function definitions for operations

Lists - The Abstract Data Type

A “list” is a very fundamental idea in programming and in life
● Shopping lists, to-do lists, class lists, ...

Type of data: An ordered collection of items

Associated Operations:

Class Exercise: What sort of operations would
you like to be able to perform on a list?

Lists - The Abstract Data Type

A “list” is a very fundamental idea in programming and in life

Type of data: An ordered collection of items
Associated Operations:
● Add an item to the front
● Add an item to the end
● Add an item at a specific position
● Delete an item from the front
● Delete an item from the end
● Delete an item from a specific position
● Check the list contains a given value
● Get the first item in the list
● Get the last item in the list
● Get the item from a specific position
● Report how many items are in the list

Lists - Programming Language View
All modern programming languages support lists!

Create and store a list

Snap!:
Python: mylist = [‘work’, ‘shop’, ‘eat’, ‘sleep’]
Java: List<String> mylist = Arrays.asList(“work”, “shop”, “eat”, “sleep”)
 (Note: The Java is not really the same as the others…)

Add to the end of a list

Snap!:
Python: mylist.append(‘wake up’)
Java: mylist.add(‘eat’)

Get the 3rd item in a list

Snap!:
Python: mylist[2]
Java: mylist.get(2)

See also: http://docs.oracle.com/javase/8/docs/api/java/util/List.html

Important Points
We use lists all the time to organize things in our lives

They are just as useful for organizing data in a program

When you want to use a list, you don’t really want to worry about
how the computer implements the basic list operations

What we didn’t talk about: There are many ways for a computer
to actually store a list (many implementations)
● Some have efficient insertions and some don’t
● Some use less memory than others
● Need to be more comfortable with how things are stored in memory

to say much more...

A Flavor of Something More Advanced
Dictionary ADT

Type of data: Collection of pairs of items
● Each pair is a unique identifier (a key) and associated data
● Examples of pairs:

○ Student ID number and GPA (886517124 , 3.45)
○ Facebook IDs and profiles (joe@example.com , “Joe Walsh, ….”)
○ Social Security Numbers and incomes (491-24-6243 , $43,700)

Associated Operations:
● Get item from key
● Add new (key, data) pair
● Delete pair using key
● Iterate through all pairs

http://docs.oracle.com/javase/8/docs/api/java/util/List.html
mailto:joe@example.com

A Flavor of Something More Advanced
Dictionary Implementation 1 - Using a List!

Example: Storing (SSN, income) pairs

Idea 1: Keep all pairs in a list

To add a new pair:
● Put it at the end

To find an item by key:
● Iterate through the list checking each key

To delete an item by key:
● Find it and then delete the pair from the list

With 7 items, looking for the last key (the
“worst case”) takes 7 iterations

With 300,000,000 items, the worst case takes
300,000,000 iterations

A Flavor of Something More Advanced
Dictionary Implementation 2 - A Binary Search Tree

Idea 2: Instead of one “path” through the pairs, make two “next choices”
at each step of the iteration
● One choice for smaller keys
● One choice for larger keys

Worse case for 7 keys is now 3 comparisons/iterations (7 = 23-1)

In 4 steps could handle 15 keys (15 = 24-1)
In 5 steps could handle 31 keys (31 = 25-1)
…
In 29 steps could handle 536,870,911 keys (229-1) - enough for all 314 million U.S.
citizens

Using a list would take over 18 million times longer!

Summary
Big take-aways:

1. Abstract Data Types allow you to focus on using your data without
worrying about how it is organized.

2. Data Structures describe how data is organized, and can make a huge
difference on how efficiently you can use it.

Other things to remember from this lecture:
● Lists are the most fundamental data structure - understand lists!
● Binary Search Trees can locate information fast - know the basic idea!

If you study more computer science:
● You’ll learn about a variety of generally useful ways to think about data (ADTs)
● You’ll learn about many advanced ways to organize data (data structures)
● You’ll learn how to analyze, discuss, and compare efficiency of alternatives

