
Algorithms

Part 1: The Basics

Notes for CSC 100 - The Beauty and Joy of Computing
The University of North Carolina at Greensboro

Reminders

Reading:
Emma reading (+ videos) - Reading Reflection due Mon 9/25
Has two short embedded videos - watch these too!

Homework 2:
Due Wednesday, 9/27 - practice for the midterm!

Definition

From Webster's dictionary:

algorithm. noun.
a procedure for solving a mathematical problem (as of finding the
greatest common divisor) in a finite number of steps that frequently
involves repetition of an operation;broadly : a step-by-step
procedure for solving a problem or accomplishing some end
especially by a computer

Another definition (from Dan Garcia, UC Berkeley bjc class): An
algorithm is a well-defined computational procedure that takes some
value or set of values as input and produces some value or set of
values as output.

Algorithms we've seen...

Integer division (division without remainder) - “div”
Max of two (or three) numbers - Lab 3 (pre-lab reading)
Converting a value to a hexadecimal digit - Lab 4
Converting numbers to/from other bases - Lab 4
Adding up values in a list - Lab 5
Creating a list of a certain size (“range”) - Lab 5

Shuffling a list - Lab 5 (this one’s a little different!)

Some Famous algorithms

JPEG Image Compression

10 megapixel image
 - 30 megabytes "raw"

6.5 MBytes at high quality
2.7 MBytes at reasonable q

Google Page Rank

Orders search results
 - "algorithm": 154,000,000 results
 - how did it find that so fast?
 - why are first listed so relevant?

Fast Fourier Transform

Signal processing
Time to frequency domain
Used in MP3
 - 100x faster than "obvious" alg

Dijkstra's Shortest Path

How can Mapquest find
directions so quickly?

Imagine how many possible
paths - can't try them all!

Problems vs Algorithms: Problems

A problem describes input/output behavior
● For each input, what are correct output(s)?
● How outputs are obtained is irrelevant - could be magic!

Input(s) OutputIrrelevant how
this works...

Examples:
● Given two integers, what is greatest common divisor?
● Given a list of numbers, what is the largest element of a list?
● Given a set of points in space, which two points are closest?
● Given a list of numbers, output the same numbers in sorted order.

Problems vs Algorithms: Algorithms

An algorithm gives a well-defined sequence of steps to
solve a problem (e.g., finding largest value in a list):

Pseudo-code

Start at the first element

For each element:

Compare the element to
the largest seen so far

If larger, replace largest
seen so far

Report largest seen so far

Snap!

Two representations of the same abstract concept

Algorithm Representations/Implementations

More examples:
Java

public int getMaxOfList(List<Integer> values) {
 int maxValue = 0;
 for (int current : values)
 if (current > maxValue)
 maxValue = current;

 return maxValue;
}

Python

def maxValue(list):
 maxValue = 0
 for i in range(len(v)):
 if v[i] > maxValue: maxValue = v[i]
 return maxValue

Disclaimer: Not how a Python
programmer would do this....

Notes:

● Some representations are
good for people to understand
(pseudo-code)

● Some are good for computers
to understand

● Efficient translation between
representations is important!

But all the same algorithm!

● Algorithms are fundamental
and transcend any fad in
languages or representation

Algorithms for Problems
An algorithm is correct if the output it produces satisfies the problem definition.
● Also say the algorithm solves the problem

Problems often have multiple algorithms that solve them - example, GCD:

Challenge

Give an algorithm for computing greatest common divisors

For example: How would you compute the GCD of 10 and 15?

Algorithms for Problems
An algorithm is correct if the output it produces satisfies the problem definition.
● Also say the algorithm solves the problem

Problems often have multiple algorithms that solve them - example, GCD:

The obvious algorithm

Euclid's GCD algorithm (300 B.C.)

Both of these algorithms solve the GCD problem
Should we prefer one over the other?

Comparing GCD Algorithms

OK, let's try it in Snap!

http://span.uncg.edu/snap/snap.html#open:http://span.uncg.edu/snap/code/Lect9-Algorithms1.xml

Algorithms: Choices, choices, choices...

Different algorithms for a problem have different properties
● Choosing the right algorithm is a matter of trade-offs

Question: What trade-offs can you think of for algorithms?

Examples of Algorithm Trade-offs

Can consider
● Simplest algorithm
● Easiest to implement
● Fastest running time
● Uses least amount of memory
● Gives most precise answer

Question: Which of these is most important?

A Deep and Rich Area of Study

The study of algorithms is about two things:
● Problem solving techniques
● Considering trade-offs

Many books devoted to study of algorithms...

Summary

Main points:

● Algorithms solve problems

● One problem may have many algorithmic solutions

● Choice of algorithm depends on trade-offs

● Lots of work to get good at designing, analyzing, and
selecting algorithms

But worth it: Algorithms are changing the world!

Looking ahead...

Next time:

How do we talk about / analyze speed of algorithms?

Optional video - how algorithms are taking over the world:

http://www.ted.com/talks/lang/en/kevin_slavin_how_algorithms_shape_our_world.html

http://www.ted.com/talks/lang/en/kevin_slavin_how_algorithms_shape_our_world.html

