Algorithms

Part 3: Time Complexity Basics

Constant, Linear, and Quadratic Time

Notes for CSC 100 - The Beauty and Joy of Computing
The University of North Carolina at Greensboro

Reminders

Readings:
Emma - contribute to on-line discussion by Monday!

Homework:
Homework 2 due on Wednesday

On the horizon: Midterm on Wednesday, Oct. 4

Constant time

We say a script (or part of a script or block definition) takes constant time if it is
a constant (usually small) number of basic steps, regardless of input.

Question: Are all of these constant time?
P N

e
G |]

= o)
{

(opemom R ooeons)

What about loops?

= — Constant time block
<«———— Constant time block
vass |

m (I of (values <~ Constant time block

"... takes constant
time if it is a constant
(usually small)

The number repetitions depends on length of "values" | number of basic

.. . steps, regardless of
e So this is not constant time... input”

But we repeat!!!

Constant time operations, repeated "length of input" times is linear time
Mathematically: Constant time loop body is time "c"
Repeated "n" times where n is length of list

Total time is then c*n (that's a linear function!)

General iterator pattern

On previous slide:
e Time was expressed as a function of input size <—
e Could write time as T(n) = c*n

Very important
"Big Idea"!!!

In general:
script varlables (sum

cet sun |2l

tor(| =gl to

Lo e «———— Mystery operation!!!
o ———

We know how many times it repeats, and all basic blocks are constant
time except perhaps our "do something..." block

e In general, if time for "do something..." block is T(n), then time for complete
script with loop is n*T(n)
e If "do something" is constant time, total time is c*n (linear)

e It "do something" is linear time, total time is c*n? (quadratic)

Two challenges

What's the time complexity?

What's the time complexity?

sort {(pLi

script variables (maxpos

(& item (1 of (pList > item (m: of (pList
=< e - O T
e

rport| maxpos)

Plotting the Running Times

Measured (using Snap!) and calculated running times for max pos:

Measured Times &
T(n)=0.01679 % n
0

Time (seconds)

o 500 1000 1500 2000
Input Size:

Note: The straight line of this graph should remind you of linear function graphs

from math class!

Plotting the Running Times

Measured (using Snap!) and calculated running times for sort:

Measured Times &
T(n)=0.00848 * n 2
80

Time (seconds)

a0 o
30 -
20 o
10 - &
o = i
o 20 0 60 80 100

Input size

Note: The nice smooth parabola should be familiar to you from math class!

Another challenge

The following predicate tests whether a list has any duplicates:

has _duplicates

0| length of (pList. - &P J
@D - CEXTTD

Question: What's the time complexity?

Predicting Program Times - Linear

Basic idea: Given time complexity and sample time(s) can estimate time
on larger inputs

Linear time: When input size doubles, time doubles
When input size triples, time triples
When input size goes up by a factor of 10, so does time

Example: A linear time algorithm runs in 10 sec on input size 10,000
How long to run on input size 1,000,000?

Answer: 1,000,000 / 10,000 = 100 times larger input
Therefore 100 times larger time, or 10 * 100 = 1,000 sec
Or 1,000/ 60 = 16.667 minutes

Predicting Program Times - Quadratic

Basic idea: Given time complexity and sample time(s) can estimate time
on larger inputs

Quadratic time: When input size doubles (2x), time quadruples (4x)
Input size goes up by a factor of 10, time goes up 102=100 times
Input size goes up k times, time goes up k? times

Example: A quadratic time algorithm runs in 10 sec on input size 10,000
How long to run on input size 1,000,000?

Answer: 1,000,000 / 10,000 = 100 times larger input
Therefore 100% = 10,000 times larger time, or 100,000 sec
Or 100,000 / 60 = 1666.7 minutes (or 27.8 hours)

Predicting Program Times - Your Turn

Joe and Mary have created programs to analyze crime statistics, where
the input is some data on each resident of a town
e Joe's algorithm is quadratic time

e Mary's algorithm is linear time
e Both algorithms take about 1 minute for a town of size 1000

Both would like to sell their program to the City of Greensboro (population
275,000)

| Problem: Estimate how long each program would take to run for Greensboro |

Summary

Algorithm "time complexity" is in basic steps

Common complexities from this lecture, from fastest to slowest are
constant, linear, and quadratic

o Asingle step, or sequence of constant-time blocks is constant time

o A simple loop with constant time operations repeated is linear time

o Aloop containing a linear time loop is quadratic

Speed depends on algorithm time complexity

o Constant time is great, but not many interesting things are constant time
o Linear time is very good

o Quadratic time is OK

Given time complexity and one actual time, can estimate time for
larger inputs

