Algorithms

Part 3: Time Complexity Basics

Constant, Linear, and Quadratic Time

Notes for CSC 100 - The Beauty and Joy of Computing
The University of North Carolina at Greensboro

Reminders

Readings:
Emma - contribute to on-line discussion by Monday!

Homework:
Homework 2 due on Wednesday

On the horizon: Midterm on Wednesday, Oct. 4

Constant time

We say a script (or part of a script or block definition) takes constant time if it is
a constant (usually small) number of basic steps, regardless of input.

Question: Are all of these constant time?

- o= ==

max of ' pX ' and rp"l" '

.

pX mod pY }/ p¥

max of ' px; and f p‘l’" and pI;

report max of pX and

What about loops?

o E— T Constant time block
ﬁcr;pt-ir_ariaﬁ[a.!{‘:sum.

ISat s 1ot) Constant time block

<———— Constant time block

" ... takes constant
But we repeat!!! time if it is a constant
(usually small)

The number repetitions depends on length of "values” number of basic
steps, regardless of

input”

e So this is not constant time...

Constant time operations, repeated "length of input” times is linear time

Mathematically: Constant time loop body is time "c"
Repeated "n" times where n is length of list

Total time is then c*n (that's a linear function!)

General iterator pattern

On previous slide:
e T[ime was expressed as a function of input size a—
e Could write time as T(n) = c*n

Very important
"Big Idea™!!!

In general:

| — Mystery operation!!!

We know how many times it repeats, and all basic blocks are constant
time except perhaps our "do something..." block

e |n general, if time for "do something..." block is T(n), then time for complete
script with loop is n*T(n)
e If "do something" is constant time, total time is c*n (linear)

e It "do something" is linear time, total time is c*n? (quadratic)

Two challenges

What's the time complexity?

What's the time complexity?

max pos In pList :

script variables | maxPos sort ! pList :

T

set maxPos | to a p
i - “ script variables ! maxPos

for| | = P to length of | pList

for! 1 = length of (pList 'to

if item 'l of pList > item maxPos of pList s
- : ; o |52t maxFos |0 max pos in first ' I of | pList

|

:EEt_ maxFos_jfo swap' | and’ maxPos of pList

report maxPos

Plotting the Running Times

Measured (using Snap!) and calculated running times for max pos:

45

Measured Times II
Tin)=0.01672 * n
40 |-

35 |
30|
25 |- o

20 | ™

Time (seconds)
k)

15 -

10 -

5=

0 il 1 1 1
o 500 1000 1500 2000

Input Size

Note: The straight line of this graph should remind you of linear function graphs
from math class!

Plotting the Running Times

Measured (using Snap!) and calculated running times for sort:

90 - -
Measured Times ®

T(n}=0.00848 * n 2
8{} - /-

70 | /
60 |-
50 |

40

Time (seconds)

30} - _a
20 |

10 +

0 — 1 1 1
] 20 40 &0 80 100

Input Size

Note: The nice smooth parabola should be familiar to you from math class!

Another challenge

The following predicate tests whether a list has any duplicates:

pList : has duplicates

g —

for! | |= @ to' length of (pList — &P

for Q= h length of | pList

i tem 1l of(pLiIst = jtem’] of pList

report - . false

Question: What's the time complexity?

Predicting Program Times - Linear

Basic idea: Given time complexity and sample time(s) can estimate time
on larger inputs

Linear time: When input size doubles, time doubles
When input size triples, time triples
When input size goes up by a factor of 10, so does time

Example: A linear time algorithm runs in 10 sec on input size 10,000
How long to run on input size 1,000,0007?

Answer: 1,000,000/ 10,000 = 100 times larger input
Therefore 100 times larger time, or 10 * 100 = 1,000 sec
Or 1,000 /60 = 16.667 minutes

Predicting Program Times - Quadratic

Basic idea: Given time complexity and sample time(s) can estimate time
on larger inputs

Quadratic time: When input size doubles (2x), time quadruples (4x)
Input size goes up by a factor of 10, time goes up 10%=100 times
Input size goes up k times, time goes up k? times

Example: A quadratic time algorithm runs in 10 sec on input size 10,000
How long to run on input size 1,000,0007?

Answer: 1,000,000/ 10,000 = 100 times larger input
Therefore 1002 = 10,000 times larger time, or 100,000 sec
Or 100,000 / 60 = 1666.7 minutes (or 27.8 hours)

Predicting Program Times - Your Turn

Joe and Mary have created programs to analyze crime statistics, where
the input is some data on each resident of a town

e Joe's algorithm is quadratic time
e Mary's algorithm is linear time
e Both algorithms take about 1 minute for a town of size 1000

Both would like to sell their program to the City of Greensboro (population
275,000)

Problem: Estimate how long each program would take to run for Greensboro

Summary

e Algorithm "time complexity” is in basic steps

e Common complexities from this lecture, from fastest to slowest are
constant, linear, and quadratic
o A single step, or sequence of constant-time blocks is constant time
o A simple loop with constant time operations repeated is linear time
o A loop containing a linear time loop is quadratic

e Speed depends on algorithm time complexity
o Constant time is great, but not many interesting things are constant time
o Linear time is very good
© Quadratic time is OK

e Given time complexity and one actual time, can estimate time for
larger inputs

