
Algorithms

Part 4: More Time Complexity
Logarithmic and Exponential Time

Notes for CSC 100 - The Beauty and Joy of Computing
The University of North Carolina at Greensboro

Reminders

Readings:
Emma - contribute to on-line discussion by Monday!

For Friday:
Pre-Lab work (Lab 7)

Next Week:
Mid-term Exam on Wednesday (study!)

Faster than linear list operations

Think about how you find a word in a dictionary:
● From the Webster's web site: "Webster's Third New International

Dictionary, Unabridged, together with its 1993 Addenda Section, includes
some 470,000 entries."

● If you checked every possible entry to see if it was the one you wanted, it
would take way too long.

● How is a dictionary organized in order to make this easier?

Challenge: Describe precisely how to quickly look up a word.

Illustration for a list of students

Basic process:
● Look in the middle of the list

● If that's not the item you're looking for, you can rule
out half of the list (smaller or larger)

● Repeat this until you find it or run out of items

● Similar idea to the Binary Search Tree from earlier

Problem: Where's Connor? (Like "Where's Waldo?" but without the goofy hat)

How long does this take?
At beginning: Could be any of n items
After 1 step: Could be any of n/2 items
After 2 steps: Could be any of n/4 items
After 3 steps: Could be any of n/8 items
...
After k steps: Could be any of n/2k items

To get to one item, need n=2k - so k = log2n

This is called logarithmic time, and gives very fast algorithms!

n log2n

1000 10

1,000,000 20

1,000,000,000 30

While you're not responsible
for knowing or being able to do
this derivation, you do need to
know about binary search and
logarithmic time.

This analysis doesn't require
anything beyond high school
algebra to understand - so try
to understand it!

So can find one item out of a
billion in just 30 comparisons!!!

Something worse...

Problem: I have 60 items, each with a value,
and want to find a subset with total value as
close to some target T as possible.

(The Price is Right on steroids...)

Algorithm: List all possible subsets of items
Add up total value of each subset
Find which one is closest

Question: If I have n items, how many subsets of n items are there?

Answer: There are 2n subsets - this is exponential time (and very bad!)

Graphically comparing time complexities

Exponential

Quadratic

Linear

Logarithmic

1000 seconds (about 15 minutes), at
1 billion ops/second

Note the log-log scale on this graph.
Max size for exponential time is around 40.

Comparing with numbers
Different time complexities, by the numbers...

Time in seconds at
1 billion ops/sec

Largest problem in
1 min at 1 billion

ops/sec
n=1,000 n=1,000,000

log2n 0.00000001 0.00000002 Huge*

n 0.000001 0.001 60,000,000,000

n2 0.001 1000 244,949

2n 10292 10301029 35

* Huge means a problem far larger than the number of atoms in the universe

There is a lot more to this than what we have covered - but this gives a
pretty accurate picture of basic algorithm time complexity!

Summary - All 4 Algorithms Lectures
● Algorithm "time complexity" is in basic steps

● Common complexities, from fastest to slowest are logarithmic,
linear, quadratic, and exponential
○ A simple loop with constant time operations repeated is linear time
○ A loop containing a linear time loop is quadratic
○ A loop halving the problem size every iteration is logarithmic time
○ A program considering all subsets is exponential time

● Speed depends on algorithm time complexity
○ Logarithmic time is fantastic
○ Linear time is very good
○ Quadratic time is OK
○ Exponential time is awful

● Given time complexity and one actual time, can estimate time for
larger inputs

