
Reductions, Self-Similarity, and Recursion

Relations between problems

Notes for CSC 100 - The Beauty and Joy of Computing
The University of North Carolina at Greensboro

Reminders

Blown to Bits: Chapter 4 discussion over the next week

Homework 3:
● Read assignment carefully to make sure you understand it
● Get started! Goal: At least watch the video by Friday

Projects: Think about ideas, talk to other students, …
We will discuss more about project ideas / teams on Wednesday

Getting to places from my house...

Now I buy a new house!

Get anywhere by first going to old house

Things to notice...

I can go anywhere from my new house by
1. Going to my old house
2. Going to my destination from there

What I want to do...

What I know how to do...

Things to notice...

I can go anywhere from my new house by
1. Going to my old house
2. Going to my destination from there

What I want to do...

What I know how to do...

Terminology: I have reduced the problem of traveling from my new house to
the problem of traveling from my old house.

Important points:
● Solution is easy to produce (often easier than direct solution)
● Solution is easy and compact to describe (especially with abstraction!)
● Solution may not be the most efficient to execute

Things to notice...

I can go anywhere from my new house by
1. Going to my old house
2. Going to my destination from there

What I want to do...

What I know how to do...

Question: Is a reduction a property of problems or algorithms?

Things to notice...

I can go anywhere from my new house by
1. Going to my old house
2. Going to my destination from there

Problem

Reductions are between problems
● The reduction operation is an algorithm
● Abstraction: We don't care how the "known algorithm" works!

Problem

The Basics
A reduction is using the solution of one problem (problem A) to solve
another problem (problem B).

We say "problem B is reduced to problem A".

Reductions are a fundamental "big idea" in computer science
● Lots of types of reductions - you could spend a lifetime studying this!

● Our reductions use a small amount of work in addition to a constant
number of calls to problem A.
○ As a result, can say problem B is not much harder than problem A
○ True even if we don't know the most efficient way to solve problem A!

An example from Mathematics
To find least common multiple (LCM):

An example from Mathematics
To find least common multiple (LCM):

But if you already have GCD

What have we done? We have reduced the problem of computing LCM
to the problem of computing GCD.

An example from Mathematics
To find least common multiple (LCM):

But if you already have GCD

What have we done? We have reduced the problem of computing LCM
to the problem of computing GCD.

So: LCM is no harder computationally than
GCD. And remember... Euclid's algorithm is
a very efficient GCD algorithm!

Not a great
algorithm...

Similarity and Self-Similarity

Reducing LCM to GCD identifies similarities between the two
problems.

Many problems are structured so that solutions are "self-similar"
- large solutions contain solutions to smaller versions of the
same problem!

Example: Think about adding up the numbers in an n-element
list. Adding up the first n-1 elements is a smaller version of the
same problem!

An algorithm can solve a large problem by breaking it down to
smaller versions of the same problem - this is called recursion.

Example: Adding up a list

7 2 3 1 5 4 3 2 5 8 6 8 3 5 3 2 2 4 2 1

Sum of 20 items (= 76)

Sum of 19 items (= 75)

+

76

Example: Adding up a list

7 2 3 1 5 4 3 2 5 8 6 8 3 5 3 2 2 4 2 1

Sum of 20 items (= 76)

Sum of 19 items (= 75)

+

76

def sum_of_first(data, size):
if (size == 0):

 return 0

subProblem = sum_of_first(data, size-1)
return subProblem + data[size-1]

def sum_of_first(data, size):
if (size == 0):

 return 0

subProblem = sum_of_first(data, size-1)
return subProblem + data[size-1]

Breaking it down

Base case: Handling smallest case directly

Recursive case: Solving a smaller
version of the same problem.

Constant amount of work to use answer
from subproblem to compute answer to
overall problem.

def sum_of_first(data, size):
if (size == 0):

 return 0

subProblem = sum_of_first(data, size-1)
return subProblem + data[size-1]

Breaking it down

Base case: Handling smallest case directly

Recursive case: Solving a smaller
version of the same problem.

Constant amount of work to use answer
from subproblem to compute answer to
overall problem.

def sum_of(data):
return sum_of_first(data, len(data))

Driver function: sets up first call to recursion

Workhorse Function

Driver Function

Another example: Sorting

"Selection sort" from algorithms lab:

def sort(data):
 for left in range(len(data), 1, -1):
 maxPos = max_pos_from_first(data, left)
 swap(data, maxPos, left-1)

Another example: Sorting

"Selection sort" from algorithms lab: Recursive version:

Base case: One item - nothing to do!

Setting up recursion: Swap max item to last position

Recursion: Sort all the rest

def sort(data):
 for left in range(len(data), 1, -1):
 maxPos = max_pos_from_first(data, left)
 swap(data, maxPos, left-1)

def recursive_sort(data, size):
 if (size > 1):
 maxPos = max_pos_from_first(data, size)
 swap(data, maxPos, size-1)
 recursive_sort(data, size-1)

Note the elegance of the recursive description: “If there’s something to sort, put
the largest item at the end and then sort the rest.”

Summary

Finding relations between problems can simplify solutions:
● Sometimes relations between different problems (reductions)
● Sometimes relation to smaller version of the same problem

(recursion)

What you should know:
● Recognize reductions and recursion
● Understand the basic principles

We will explore this more in a lab!

