Security and Privacy

Threats and Tools to Protect Yourself

Notes for CSC 100 - The Beauty and Joy of Computing The University of North Carolina at Greensboro

Reminders

Blown to Bits

Oops... some places said Chapter 5, some said Chapter 6... Either is ok....

Chapter 5 or 6: Contribute to discussion by next Monday

Project

Get solid, workable code ready by Friday! Demos and final presentations in lab this Friday

Security Basics - What is security?

Commonly discussed in terms of three goals:

• **C**onfidentiality

Unauthorized people should not get information <u>Violation example</u>: Thief gets your credit card number

• Integrity

Unauthorized people should not modify information
<u>Violation example</u>: Thief changes "destination account" on a transfer

• <u>A</u>vailability

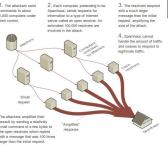
Authorized people should be able to get information/services <u>Violation example</u>: "Hacktivist" knocks out a web server

-	
-	

Example of Security Attacks

Spamhaus Attack - Part 1

Ethe Actual Jork Etimes Business Day Technology WORLD U.S. XX./ REGION BUSINESS TECHNOLOGY SCHOOL BUSINESS OFFISION


Spamhaus, a spen-prevention service hashing to a beginning to the largest power of the larges

How the Cyberattack on Spamhaus Unfolded

Credit: New York Times. March 30, 2013

Example of Security Attacks

Spamhaus Attack - Part 2

The Initial Attack

Question:

What security goal is violated?

Credit: New York Times, March 30, 2013

Example of Security Attacks

Home Depot Compromise

Home Depot confirms months-long hack

By Jose Pagliery @Jose_Pagliery September 9, 2014; 7:10 AM ET

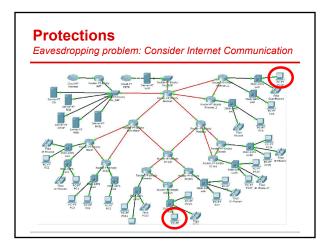
Home Depot on Monday confirmed that hackers indeed broke into

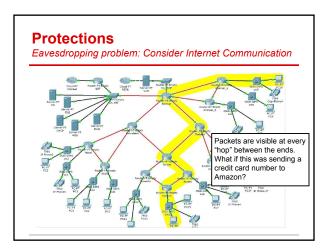
its payment systems -- maybe as far back as April.

Home Depot (HD)'s hack might be even bigger than Target (TGT)'s was last year. In Target's case, hackers slipped in for three weeks and grabbed 40 million debit and credit cards. Hackers remained in Home Depot's computers — unnoticed — for about five months.

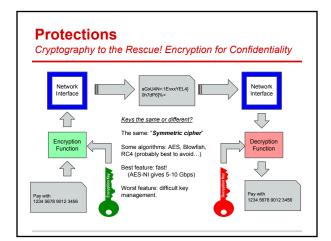
 $Hackers \, stole \, debit \, and \, credit \, card \, data \, from \, shoppers \, in \, the \, United \, States \, and \, Canada.$

The question now is how many millions of shoppers are affected.


Home Depot said it's still investigating the breach, but said there's still "no evidence" debit


But noted Internet fraud expert Brian Krebs, who first reported the Home Depot breach a

But noted internet traud expert Brian Krebs, who first reported the Home Depot breach week ago, wrote early Tuesday that there's a sharp increase in recent days in fraudulent.


Question: What security goal is violated?

Protections

How big is a 128-bit (AES) key? To try all keys (brute force)...

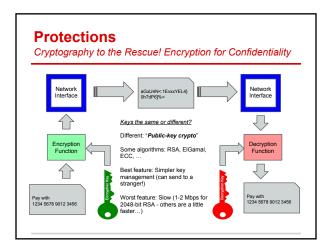
2004 Estimate: \$100k machine breaks 56-bit DES key in 6 hours

What about a 128-bit key? \$100k machine takes >10¹⁸ years [the earth is <10¹⁰ years old]

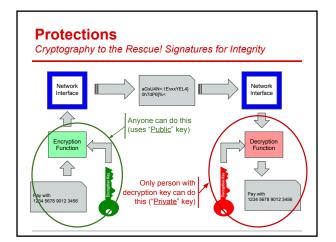
What if we spent \$100,000,000,000?

Would take >1012 years

What about Moore's law saying that in 20 years machines will be about 16,000 times faster?


Would take >108 years

OK, what about in 40 years (machines 100 million times faster)? Would still take >30,000 years


Do you really think Moore's law will last this long?

What about improvements in algorithms/cryptanalysis or super-duper quantum computers?

This could change everything....

Protections Cryptography to the Rescue! Signatures for Integrity Network Interface Netw

Protections

Verifying the origin of a web site

Verify with Bank of America verification key

Protections

Verifying the origin of a web site

Signed by Bank of America Signing Key _

Verify with Bank of America verification key

How do you know you have the right verification key?

It is signed (called a "certificate")! ... by a Certification Authority (CA)

A handful of trusted CA's built in to browser.

Protections Viewing certificates Certificate Viewer:"www.bankofamerica.com General Details This certificate has been verified for the following uses: SSL Server Certificate Issued To Common Name (CN) www.blankofamerica.com Organization (O) Blank of America Corporation Organizational Unit (OU) Network Infrastructure 40:00.375-3242F7FCAFC1:85:A1.CS:11:60:2E:88 Stessued By Common Name (CN) Organization (O) Organizational Unit (OU) VeriSign Tlust Network Validity Issued On Expires On 03/21/2013 03/22/2014 Fingerprints SHA1 Fingerprint MD5 Fingerprint 7F;EA:85;CA:2D:9E:D1:4F;A3:3D:63;FB:CD:C0:CA:F9:DC:10:12:ED 91:4D:8A:F5:1F;F7:05:A1:EC:DA:85:6A:47:E3:EE:5C Close

Protections - Tools

Crypto-enabled tools - Tools for e-mail and file protection

PGP: "Pretty Good Privacy"

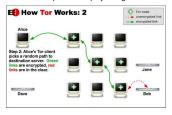
- · Originally created by Phil Zimmerman in 1991
- Interesting legal (export) and patent (RSA) problems at the time Phil Zimmerman was under criminal investigation (no charges filed)
 - RSA Inc. allowed used use of RSAREF library for non-commercial use
 - (still other patent issues though)
- OpenPGP and then GPG (GnuPG) to avoid patent questions

Functionality:

- Supports encrypting and signing messages and/or files
 Most direct use is for e-mail

 - People also use for encrypting files or protecting integrity (e.g., Linux software distribution)

Obtaining: GPG available from http://www.gnupg.org/


Protections - Tools Crypto-enabled tools - Tools for instant messaging OTR (Off The Record) · Encryption support for instant messaging protocols Designed by well-known and trusted people (Goldberg & Borisov) • One design goal was deniability Forward secrecy: Archived communication secure even if long-term keys are later discovered Works as a plug-in for common IM software (like Pidgin) Message Timestamp Formats 2.7.10 Customizes the message timestamp formats. For more information: Offline Message Emulation 2.7.10 Save messages sent to an offline user as pounce Pidgin GTK+ Theme Control 2.7.10 Provides access to commonly used gibro settings. https://otr.cypherpunks.ca/ Pidgin Theme Editor 2.7.10 Pidgin Theme Editor. Plugin Details Configure Plygin Glose

Protections - Tools

Crypto-enabled tools - Tools for anonymous Internet browsing

Tor: "The Onion Router"

- Traffic endpoints obscured using multiple hops and encryption
- Paths are randomized to obscure patterns
- For more information: http://www.torproject.org

Privacy

"Privacy" is not the same as "Secrecy"

- Sometimes you willingly give your informationWhat happens to your information then?

Cookies

- Information stored in browser
- Associated with specific domains/sites
- Sent along with web page requests
- ... including image/banner ad requests
- Information can include login credentials
- ... such as Facebook login (with your name!)

"Do Not Track" setting

· Recent initiative to indicate privacy prefs

Summary

Important things to know

Security goals: Confidentiality, Integrity, Availability

Encryption for confidentiality

- Terms: Plaintext, Ciphertext, Keys
- Symmetric cipher vs. Public-key encryption

Signatures for integrity

- Types of keys: Signing key, verification key
- · Web site origin verification: Certificates, CAs

Tools

- PGP and GPG for encrypted email
- OTR for private chat
- Tor for anonymous communication