
The University of North Carolina at Greensboro Handout 6

CSC 330: Advanced Data Structures September 22, 2016

Prof. Stephen R. Tate

Assignment 2 – Due Monday, October 3 at Noon

Note: This assignment has an unusual deadline, which is not on a class day. Your first exam is on

Tuesday, October 4, and I don’t want you to have to choose between a last minute push to complete

this assignment and studying for the exam. I would still encourage you to try to get this finished by the

preceding Friday, at the latest.

Objectives: There are three objectives for this assignment:

• Master details of red-black tree insertion

• Get further practice writing recursive functions on trees

• Learn about basic experimental analysis and profiling

Background: Insertion into a red-black tree can either be done with bottom-up tree balancing, as de-

scribed in Section 19.5.1, or with top-down tree adjustments, as described in Section 19.5.2. The code in

the book uses the top-down method, which is nice because all tree adjustments are done in a single pass

down the tree when searching for the insertion point. In contrast, the bottom-up balancing requires two

passes: one down the tree to find the insertion point, and then a pass back up the tree for adjusting the

tree. However, the bottom-up approach makes some applications of red-black trees much easier, so it’s

worth considering this approach further. We can simplify the bottom-up method (and avoid recursion)

by including a “parent” pointer in each node, allowing us to easily move up the tree as well as down.

Here’s the technique in a nutshell: Do a standard unbalanced binary search tree insertion first, and

color the new node red. After just the insertion of the new red node into a non-empty red-black tree, it’s

clear that all red-black tree properties are still satisfied, with the possible exception of property 3 (page

715). In other words, if the parent of the new node is also red, then we have just created a red child of a

red node, which is not allowed (call this a “red-red violation”). If we have a red-red violation, we can

correct it at this position with a rotation (single or double), as described in Section 19.5.1, which may

create a single red-red violation higher in the tree. If there’s a new violation, we move up the tree and

repeat this process, continuing up the tree until there are either no more violations or we reach the root.

If the algorithm goes all the way up the tree to the root, there is a possibility that the root is changed to a

red node — in that case, it should simply be recolored black so that red-black tree property 2 is satisfied.

More details on this are in the textbook, and we will discuss it thoroughly in class.

What To Do: Start with the code in Bitbucket, as in previous assignments: fork the “Assign2” repos-

itory, rename it to include your username, grant read access to the class administrators, and then use

NetBeans on your computer to clone it so you can work with it. This NetBeans project contains the

full unbalanced binary search tree implementation (from Section 19.1), the full top-down red-black tree

implementation (from Section 19.5), and an incomplete class AltRedBlackTree that is the start of a



2 Handout 6: Assignment 2 – Due Monday, October 3 at Noon

bottom-up rebalancing implementation. I have slightly modified this code so that the RedBlackTree

and AltRedBlackTree are subclasses of the BinarySearchTree class, so that operations that

don’t depend on the rebalancing operations on red-black trees can be done by generic code that will

work for all binary search trees (operations such as the finding keys, counting numbers of nodes,

etc.). In object-oriented design terminology this is a good way to organize these classes, since a

RedBlackTree IS-A BinarySearchTree with some additional functionality for maintaining the

red-black balance properties.

Your first task is to study the book’s red-black tree implementation, along with the explanation in

the book, and make sure you completely understand it. Then you should do the following:

• Finish the implementation of the AltRedBlackTree class for the bottom-up rebalancing tech-

nique. Note that the node definition in this class (AltRBNode) includes a parent pointer, as de-

scribed above. The basic insertion routine is provided, and you need to write the adjustTree()

method that does the bottom-up rebalancing. Make sure you test your implementation thoroughly,

which will require writing some internal testing procedures (some basic tests are provided in the

main method in the AltRedBlackTree class, although this probably isn’t enough to test ev-

erything – you can run this main function by selecting the file in the projects pane of NetBeans,

right clicking and selecting “Run File”).

• The main project class, Assign2, includes code to print out statistics about the tree, but you

will need to implement a few new methods in the BinarySearchTree class: getSize(),

getHeight(), and getInternalPathLength(). [Hint: See Figures 18.19 and 18.21 in

the book.]

• Once you are confident that your tree implementation and statistics methods are working correctly,

run the main program in the Assign2 class, which will builds trees and prints out statistics about

the trees that these implementations build. This will run six tests: each of the three implementa-

tions is run once with randomly ordered insertions, and once with insertions in sorted order.

• NetBeans has a built-in profiler that will measure how much time each of the testing methods

takes to build its tree, and you should use this to get a feel for the real-world timing of these

implementations. Specific instructions on how to run the profiler and interpret the results are on

the class web site. When the run completes, make sure you take a snapshot of the results, and

then do a “Save Snapshot to Project” to store the results (do this before you commit your files and

push to upstream!).

Hint: Note that some of the internal methods from the provided RedBlackTree class can be used

either directly or with small changes (especially the various rotation methods). You can cut and paste

these into the AltRedBlackTree class as a starting point. The biggest change you’ll need to make

to the rotation functions is to make sure parent pointers are modified correctly.

Submission Instructions: Using NetBeans, commit all changes to your project and do a “push to

upstream” to put the most up-to-date files on the Bitbucket server. Remember: Do not create a pull

request — I will clone your repository (if it exists and you granted me access) at noon on the due date,

and will assume that is your submission. If you intend to keep working on your project and submit late,

please let me know by email, and I will ignore your repository until the late submission deadline.


