
The University of North Carolina at Greensboro Handout 10

CSC 330: Advanced Data Structures November 8, 2016

Prof. Stephen R. Tate

Assignment 5 – Due Thursday, November 17

Objective: The objective of this assignment is for you to gain experience working with the basic graph

data structure, including iterating through vertices and adjacencies. This assignment is not as long or

intricate as other full-credit assignments, so take the time to experiment with the graph data structure

and get comfortable working with it. The time you invest in this will pay off on the final assignment!

Background: Courses in Computer Science depend heavily on prerequisites, and it is common to

represent prerequisites as a graph (like on the prerequisite chart we publish on our department web

page). It is easy to create a graph of courses linked to prerequisites by scraping data from the UNCG

Bulletin, and you can use that as input to construct a graph with an edge from a course to each of its

prerequisites. However, sometimes we might want to look at this graph in the other way: For each

course that acts as a prerequisite, what courses depend on it? This is the transpose of the original graph,

or the graph with the same vertices and connections, but with the direction of each edge reversed. Your

goal for this assignment is to write methods that will allow you to take a graph of Computer Science

courses and prerequisites, and print the transpose graph. Samples of the output for both the original

graph and the transposed graph are given on the following pages.

What To Do: Start with the code in Bitbucket, as in previous assignments: fork the “Assign5” repos-

itory, rename it to include your username, grant read access to the class administrators, and then use

NetBeans on your computer to clone it so you can work with it.

You are to write two methods (stubs are given in the provided code):

• printGraph() prints the graph in a readable form, as shown in the samples on the following

pages. Note that the output is “nice” in the sense that each vertex is followed by an appropriate,

grammatically correct phrase on the same line, depending on whether there are zero, one, or more

adjacent vertices. Note also that the vertices are given in sorted order — you actually get that

“for free” if you change one data structure that is used in the Weiss graph implementation. These

small touches matter!

• getTransposedGraph() operates on a graph and returns a new graph that is the transpose

of the original graph (which is not changed).

Submission Instructions: Using NetBeans, commit all changes to your project and do a “push to

upstream” to put the most up-to-date files on the Bitbucket server. Remember: Do not create a pull

request — I will clone your repository (if it exists and you granted me access) at 12:30 on the due date,

and will assume that is your submission. If you intend to keep working on your project and submit late,

please let me know by email, and I will ignore your repository until the late submission deadline.



2 Handout 10: Assignment 5 – Due Thursday, November 17

Original Graph Output: This shows the output of the printGraph() method when called on the

original graph (courses with edges to their prerequisites). Your output will not be two columns, of course

— it’s just printed that way here to save space.

CSC130 -- no edges out

CSC230 -- edge out to:

CSC130

CSC250 -- edge out to:

CSC130

CSC261 -- edges out to:

CSC230

CSC250

CSC312 -- edges out to:

CSC230

CSC250

CSC330 -- edges out to:

CSC230

CSC250

CSC339 -- edge out to:

CSC330

CSC340 -- edge out to:

CSC330

CSC350 -- edge out to:

CSC250

CSC463 -- edges out to:

CSC562

CSC567

CSC464 -- edge out to:

CSC463

CSC465 -- edge out to:

CSC464

CSC471 -- edge out to:

CSC330

CSC510 -- edges out to:

CSC330

CSC567

CSC521 -- edges out to:

CSC340

CSC350

CSC522 -- edges out to:

CSC330

CSC350

CSC523 -- edges out to:

CSC130

CSC350

CSC524 -- edge out to:

CSC523

CSC529 -- edges out to:

CSC330

CSC350

CSC539 -- edges out to:

CSC261

CSC330

CSC540 -- edge out to:

CSC340

CSC553 -- edge out to:

CSC350

CSC555 -- edge out to:

CSC330

CSC561 -- edges out to:

CSC261

CSC330

CSC350

CSC562 -- edges out to:

CSC261

CSC340

CSC567 -- edges out to:

CSC261

CSC330

CSC568 -- edges out to:

CSC330

CSC567

CSC580 -- edges out to:

CSC330

CSC350

CSC583 -- edges out to:

CSC567

CSC580



Handout 10: Assignment 5 – Due Thursday, November 17 3

Transposed Graph Output: This shows the output of the transposed graph (the graph with all edge

directions reversed). From this output, we can easily check a course to see what later courses depend on

it. Note how important this class (CSC 330) is!

CSC130 -- edges out to:

CSC230

CSC250

CSC523

CSC230 -- edges out to:

CSC261

CSC312

CSC330

CSC250 -- edges out to:

CSC261

CSC312

CSC330

CSC350

CSC261 -- edges out to:

CSC539

CSC561

CSC562

CSC567

CSC312 -- no edges out

CSC330 -- edges out to:

CSC339

CSC340

CSC471

CSC510

CSC522

CSC529

CSC539

CSC555

CSC561

CSC567

CSC568

CSC580

CSC339 -- no edges out

CSC340 -- edges out to:

CSC521

CSC540

CSC562

CSC350 -- edges out to:

CSC521

CSC522

CSC523

CSC529

CSC553

CSC561

CSC580

CSC463 -- edge out to:

CSC464

CSC464 -- edge out to:

CSC465

CSC465 -- no edges out

CSC471 -- no edges out

CSC510 -- no edges out

CSC521 -- no edges out

CSC522 -- no edges out

CSC523 -- edge out to:

CSC524

CSC524 -- no edges out

CSC529 -- no edges out

CSC539 -- no edges out

CSC540 -- no edges out

CSC553 -- no edges out

CSC555 -- no edges out

CSC561 -- no edges out

CSC562 -- edge out to:

CSC463

CSC567 -- edges out to:

CSC463

CSC510

CSC568

CSC583

CSC568 -- no edges out

CSC580 -- edge out to:

CSC583

CSC583 -- no edges out


