University of North Carolina at Greensboro Handout 3
CSC 330: Advanced Data Structures August 30, 2016
Prof. Stephen R. Tate

CSC 330 Java Coding Style Rules

These rules are based on the original standard Code Conventions for the Java Program-
ming Language, produced by Sun (the original creators of Java) and available at

http://www.oracle.com/technetwork/java/codeconvtoc-136057 .html

While these code conventions are no longer actively maintained, they form the basis of
most professional style guidelines for Java, such as Google’s Java Style Guide. You are
expected to follow these style guidelines for all programming assignments in this class,
although you will not lose points for following the style from either the CSC 230 book
(see Appendix A) or the CSC 330 book (no style guidelines are explicitly stated in the
book, but are implied through their code examples).

1. Required comments at the top of every file include: your name, assignment num-
ber, a brief (one line) description of what is in the file, the last date modified,
and a statement that you followed the UNCG Academic Integrity Policy on the
assignment. This is slightly different from the Code Conventions, because we're in
a class setting.

2. All data elements in a class should be private, or possibly of package or protected
scope if there is a compelling reason for this.

3. Proper indentation is an absolute must! Consistently use 2-4 characters for each
indentation level — the exact number of spaces is up to your personal taste, but
be consistent!

4. All lines should be at most 80 characters long.
5. Use whitespace and blank lines to increase readability.

6. Use meaningful but concise names for classes, methods, and variables. Class
names should be nouns, begin with a capital letter, and each word of a multi-
word name should start with a capital letter (Examples: Tree, BinaryTree, and
BinarySearchTree). Method names should be verbs, start with a lower case let-
ter, and start subsequent words with upper case letters (Examples: setData(),
isEmpty (), and getNext()). Variables in a class should start with a lower case
letter and capitalize subsequent words (like method names), but should be nouns



10.

11.
12.

13.

14.

15.

Handout 3: CSC 330 Java Coding Style Rules

(Examples: root, rightChild, and vertexList). Local variables in a function
should also have meaningful names, with an exception being for simple loop vari-
ables (i is ok for an integer loop, x for a variable in numeric code, etc.).

Should consistently order class definitions as follows: static variables, instance vari-
ables; constructors, and finally the methods (grouped by functionality).

Use modular, multi-file construction. Fach source file should contain only one
public class or interface (although a file may include private classes or nested classes
in support of the main public class should be in the same file).

Provide constructors to make sure objects are initialized properly.

Variables should be declared with as narrow a scope as possible, including declaring
loop variables in a for statement. If a variable is only used within a single block, it
should be declared within that block. Never declare a variable outside of a method
unless it is truly part of the object or class state (i.e., don’t use an instance variable
as a lazy way to pass values from one method to another). Local variables should
be declared as close to their first use a possible, and should always be initialized.

Use parentheses for grouping expressions, especially precedence is not obvious.

Use braces around every block of code, including single-line blocks after an “if”
statement or loop construct. I prefer “Egyptian style” brace placement, which
puts open braces at the end of lines rather than on a line by itself (this is fairly
universal in professional style guides, but almost every introductory programming
book does it differently).

Put comments before each function or method, and at the beginning of each source
file. Your comments should in “javadoc style,” which allows a description of your
class to be extracted and formatted in HTML. Make sure you clearly state the
purpose of each method, what parameters the method expects, and the meaning
of the return value (if any). Rule of thumb: I should have all the information I
need to call a function and interpret the results by looking only at the function
comments (I shouldn’t have to look at the code at all).

Comment unclear parts of the code, although your goal should be to make code
as clear as possible so that it is “self-documenting” and does not need additional
explanation. Comments are very helpful with variable declarations, if there is
information that is not clear from the variable name (how it’s used, assumptions
about legal values, etc.).

Don’t improvise — if there’s no rule stated, but all code you see is written a
particular way, imitate that and don’t make up your own non-standard style.



