
University of North Carolina at Greensboro Handout 4
CSC 330: Advanced Data Structures September 2, 2009
Prof. Stephen R. Tate

Assignment 1 — Using Binary Search Trees
Due: Monday, September 14

Objectives: This assignment has two objectives: First, to get students started using and pro-
gramming in the Unix environment, and second, to experimentwith lookup tables based on
lists and trees and consider performance under various scenarios.

High-Level Description: You will write a program that reads a large text file, and keepstrack
of how many times each word occurs in the file using a list and a binary search tree. You will
measure the time required by both implementations on several different inputs, and describe
what affects the performance in each case. The programming for this assignment is not terribly
deep or complicated, but you will working on a new system and you should not underestimate
the challenges that this can raise — donot wait until the last minute to start this assignment!

Details: For this assignment, you will use the binary search tree implementations from the
book, as well as files supplied specifically for this assignment. Unfortunately, the code from
the book is not compatible with the most modern compilers (such as the one on thecmpunix
machine that you’ll be using!), so do not download the code from the textbook publisher or
authors. Instead, go to the assignments link on the class webpage, and follow that to download
corrected versions. Alternatively, you can copy the code directly on thecmpunix system from
directory˜srtate/330/assign1 .

Your program will need to keep track of pairs consisting of a word and an integer count.
In order to do this, you should define a class for these pairs, with a constructor and methods
to retrieve the current count, increment the count, get the word, etc. You should also provide
operator overloads for the== and< comparison operators. I’ll call this “pairClass ” in this
handout, but you can feel free to name it however you’d like.

You will code up two alternative ways of keeping track of these pairs: using a list (use
the STL list class) and a binary search tree (use thestree class from the book with the
provided code). To see how to do this, look through the main file, wordreader.cpp : it
reads a word at a time from standard input and then calls a function findAndInc() for each
word it reads. This function should look for the word in your data structure, and if it finds the
word it should increment the count for that word — if it doesn’t find the word, then it’s a new
word and should be added to the data structure (with count 1).Since you will be using both a
list and a tree to keep track of the words, you will need to write two implementations of this
function with slightly different function signatures:

void findAndInc(stree<pairClass> &allWords, const strin g &word)
void findAndInc(list<pairClass> &allWords, const string &word)



2 Handout 4: Assignment 1 — Using Binary Search Trees

By doing it this way, you can simply change the declaration of your data structure on the
first line of themain function, and when you recompile the compiler will automatically link
that call to the correct version of thefindAndInc() function.

Finally, notice that wordreader.cpp calls aprocessWords() function (again, one of two
functions, depending on the type of your data structure). You should use this function to print
out the words in your data structure along with the count of each one — see the sample output
below for an example. The words should be sorted, so for your list implementation you may
want to use thesort() method provided by the STLlist class before printing.

Testing and Analysis:When you are writing and debugging your code, you will probably
want to use a small input file, such as the one in the “sample input” below. For testing with
text from files (rather than entered from the keyboard) you should use input redirection. Once
you are convinced that your code works correctly, you will use some large text files provided
in directory ˜srtate/data/assign1 for testing. There are three files,test1.txt ,
test2.txt , andtest3.txt , and all three consist of the full text ofThe Count of Monte
Cristo, plus information at the beginning that varies by test case.

You should run all three test files through your program usingthe list data structure, and
then all three using the tree data structure. So that you are really timing just the data structure
operations, you can comment out the call toprocessWords() in the main program. Use
the Unixtime command to time your program. For example, you might run the program like
this:

time ./wordreader <˜srtate/data/assign1/test1.txt

This will print 3 different times — the one you want to report is the “user” time, which reflects
the amount of time your program actually spent executing on the CPU. Feel free to adjust the
compiler flags in theMakefile to experiment with optimization settings (e.g., using “-O4 ”
when compiling), but make sure you use consistent flags when comparing implementations.

Finally, look at the test data files, and think about why the different implementations per-
formed as they did for the different input files. Write a brief report giving a table of your
measured times and explaining the performance — explain whythe different implementations
performed well or didn’t perform well on different inputs. It is important that you are as precise
in your descriptions as possible, and use terminology and notation that is standard in computer
science. For example, you should be referring to concepts “worst case,” “best case,” and “av-
erage case,” and should be describing performance in terms of asymptotic notation (“big-oh
notation”, although if you want to really be precise you should use better notations such as
“theta” notation).

To Turn In: Use the330submit program (see Handout 3) in order to turn in your code, using
assignment nameassign1 . You should submit every file that you have created or modified
(you can also include the.h files that were provided to you, but this isn’t necessary — they
shouldnot be changed!). On the due date, you should turn in a printout ofyour code along
with your report giving your performance analysis.



Handout 4: Assignment 1 — Using Binary Search Trees 3

Sample Input/Output:

SAMPLE INPUT

Peter Piper picked a peck of pickled peppers,
A peck of pickled pepers Peter Piper picked;
If Peter Piper picked a peck of pickled peppers,
Where’s the peck of pickled peppers Peter Piper picked?

SAMPLE OUTPUT

a: 3
if: 1
of: 4
peck: 4
pepers: 1
peppers: 3
peter: 4
picked: 4
pickled: 4
piper: 4
the: 1
where’s: 1


