University of North Carolina at Greensboro Handout 4
CSC 330: Advanced Data Structures September 2, 2009
Prof. Stephen R. Tate

Assignment 1 — Using Binary Search Trees
Due: Monday, September 14

Objectives: This assignment has two objectives: First, to get studeattes using and pro-
gramming in the Unix environment, and second, to experimagtiit lookup tables based on
lists and trees and consider performance under variousisosn

High-L evel Description: You will write a program that reads a large text file, and ketegpsk
of how many times each word occurs in the file using a list anoharp search tree. You will
measure the time required by both implementations on Sediferent inputs, and describe
what affects the performance in each case. The programmirgi§ assignment is not terribly
deep or complicated, but you will working on a new system amalshould not underestimate
the challenges that this can raise —rai wait until the last minute to start this assignment!

Details: For this assignment, you will use the binary search treeemphtations from the
book, as well as files supplied specifically for this assignin&nfortunately, the code from
the book is not compatible with the most modern compilerst{sas the one on th@mpunix
machine that you'll be using!), so do not download the codenfthe textbook publisher or
authors. Instead, go to the assignments link on the claspagd, and follow that to download
corrected versions. Alternatively, you can copy the codeatlly on thecmpunix system from
directory”srtate/330/assignl

Your program will need to keep track of pairs consisting of@avand an integer count.
In order to do this, you should define a class for these paith, avconstructor and methods
to retrieve the current count, increment the count, get thelyetc. You should also provide
operator overloads for thre= and< comparison operators. I'll call thigpairClass " in this
handout, but you can feel free to name it however you'd like.

You will code up two alternative ways of keeping track of thgmirs: using a list (use
the STLIist class) and a binary search tree (usedtiee class from the book with the
provided code). To see how to do this, look through the ma@ Wordreader.cpp : it
reads a word at a time from standard input and then calls d@¢umiindAndinc() for each
word it reads. This function should look for the word in yowatal structure, and if it finds the
word it should increment the count for that word — if it doddimd the word, then it's a new
word and should be added to the data structure (with cour8ibe you will be using both a
list and a tree to keep track of the words, you will need toensito implementations of this
function with slightly different function signatures:

void findAndInc(stree<pairClass> &allWords, const strin g &word)
void findAndinc(list<pairClass> &allWords, const string &word)

2 Handout 4: Assignment 1 — Using Binary Search Trees

By doing it this way, you can simply change the declarationairydata structure on the
first line of themain function, and when you recompile the compiler will autoroalty link
that call to the correct version of ti@dAndIinc() function.

Finally, notice that wordreader.cpp callp@cessWords() function (again, one of two
functions, depending on the type of your data structurey sfwould use this function to print
out the words in your data structure along with the count cheane — see the sample output
below for an example. The words should be sorted, so for ysumhplementation you may
want to use thaort() method provided by the STlist class before printing.

Testing and AnalysisWhen you are writing and debugging your code, you will projabl
want to use a small input file, such as the one in the “samplet’irgelow. For testing with
text from files (rather than entered from the keyboard) yawukhuse input redirection. Once
you are convinced that your code works correctly, you wi# gsme large text files provided
in directory “srtate/data/assignl for testing. There are three filegstl.txt ,
test2.txt , andtest3.txt , and all three consist of the full text dhe Count of Monte
Cristo, plus information at the beginning that varies by test case.

You should run all three test files through your program ush@glist data structure, and
then all three using the tree data structure. So that youeatly timing just the data structure
operations, you can comment out the calptocessWords() in the main program. Use
the Unixtime command to time your program. For example, you might run tbhgnam like
this:

time ./wordreader <"srtate/data/assignl/testl.txt

This will print 3 different times — the one you want to repatie “user” time, which reflects
the amount of time your program actually spent executinghenGPU. Feel free to adjust the
compiler flags in theMakefile to experiment with optimization settings (e.g., usin®4”
when compiling), but make sure you use consistent flags wbeparing implementations.

Finally, look at the test data files, and think about why tHéedént implementations per-
formed as they did for the different input files. Write a brieport giving a table of your
measured times and explaining the performance — explaintingifferent implementations
performed well or didn’t perform well on different inputd.i$ important that you are as precise
in your descriptions as possible, and use terminology atatioa that is standard in computer
science. For example, you should be referring to conceptsswcase,” “best case,” and “av-
erage case,” and should be describing performance in tef@symptotic notation (“big-oh
notation”, although if you want to really be precise you ddouse better notations such as
“theta” notation).

ToTurnIn: Use the330submit program (see Handout 3) in order to turn in your code, using
assignment namassignl . You should submit every file that you have created or modified
(you can also include thda files that were provided to you, but this isn’t necessary —y the
shouldnot be changed!). On the due date, you should turn in a printoybof code along
with your report giving your performance analysis.

Handout 4: Assignment 1 — Using Binary Search Trees

Sample I nput/Output:

SAMPLE INPUT

Peter Piper picked a peck of pickled peppers,

A peck of pickled pepers Peter Piper picked;

If Peter Piper picked a peck of pickled peppers,
Where’s the peck of pickled peppers Peter Piper picked?

SAMPLE OUTPUT

a: 3

if: 1

of: 4
peck: 4
pepers: 1
peppers: 3
peter: 4
picked: 4
pickled: 4
piper: 4
the: 1
where’s: 1

