
University of North Carolina at Greensboro Handout 7
CSC 330: Advanced Data Structures October 5, 2009
Prof. Stephen R. Tate

Assignment 3 — Performance of Red-Black Trees
Due: Monday, October 19

Objective: The objective of this assignment is for students to experiment with red-black trees
to gain insight into typical performance of this data structure.

High-Level Description: The performance of lookup operations in a red-black tree depends
on the depth of the tree, which is guaranteed to be at most2 log

2
(n + 1) (see page 702 of the

textbook). This formula gives an absolute, guaranteed upper-bound on performance, but leaves
open the question of whattypical performance is. For this assignment, you are to modify the
word-counting program from Assignment 1 to use the red-black tree implementation provided
by the textbook authors in filed_rbtree.h (you may start from either your solution to
Assignment 1 or the instructor-written solution), and thenprint statistics out about the actual
red-black tree that has been constructed.

Details: For this assignment you will be modifying both the word-counting program from
Assignment 1 and the filed_rbtree.h. Note that, like in Assignment 1, the version of
files distributed by the textbook authors doesn’t work on modern compilers, so you should
download the modified versions from the class web site. You should add a public method
printStats() to therbtree class (adding the code tod_rbtree.h) that prints the
following values: The calculated minimum and maximum possible depths for any red-black
tree with this many nodes, the actual depth of this tree, the average depth of the tree where each
node is equally likely, and the average depth of the tree where nodes are weighted by the count
of the number of times the word occurs (more details below anddiscussed in class).

To calculate the minimum and maximum values, it is useful to be able to calculate loga-
rithms, floors, and ceilings. These functions are availableif you put#include <cmath> at
the top of your file. The signatures for the functions you might need are:

double log2(double x);
double ceil(double x);
double floor(double x);

The average depth (unweighted and weighted) gives an indication of average lookup time
in the tree. The idea with the unweighted average depth is this: if you pick a word at random,
where all words have equal probability of being chosen, whatis the expected depth of the node
containing that word? For the weighted average the idea is the same, except that words don’t
have equal probabilities — the words have probabilities that are equal to their proportion of
occurrence in the input.



2 Handout 7: Assignment 3 — Performance of Red-Black Trees

Mathematically, consider that we haven different words in the file, with countsc1, c2, . . . , cn.
After constructing the tree, these words are at depthsd1, d2, . . . , dn. The unweighted average
depth and weighted average depth are given by

1

n

n∑

i=1

di and
∑

n

i=1
cidi∑

n

i=1
ci

.

To get counts, simply write your function that computes the weighted average depth as-
suming that it will only be called with apairClass object in the nodes, and you can call
getCount() (or whatever you called this method in your class). This is a huge assumption,
and such code may not work with all C++ compilers — however, it does work on theg++
compiler on ourcmpunix system.

To Turn In: Use the330submit program (see Handout 3) in order to turn in your code,
using assignment nameassign3. You need to turn in a printout of your code in class, and
if you do the extra credit (see below) you should turn that written solution in along with your
printout.

Extra Credit (up to 20 points): What is the absolute worst-case red-black tree that you can
construct (in other words, the largest possible depth for some numbern of nodes)? Can you
make a tree that actually has depth2 log

2
(n + 1)? To answer this question, describe a gen-

eral process for creating a worst-case tree — it should be possible to follow your construction
process to make larger and larger trees following the same process/pattern. After clearly de-
scribing the process, analyze the relation between the number of nodes (n) and the depth (d).
Can you get close tod = 2 log

2
(n + 1)?

Sample Input/Output:

SAMPLE INPUT

Peter Piper picked a peck of pickled peppers,
A peck of pickled peppers Peter Piper picked;
If Peter Piper picked a peck of pickled peppers,
Where’s the peck of pickled peppers Peter Piper picked?

SAMPLE OUTPUT

Minimum possible depth: 3
Maximum possible depth: 7
Actual depth of tree: 3
Average (unweighted) depth: 2
Average (weighted) depth: 1.88235


