
University of North Carolina at Greensboro Handout 9
CSC 330: Advanced Data Structures October 26, 2009
Prof. Stephen R. Tate

Assignment 4 — Comparing Heapsort Alternatives
Due: Monday, November 9

Objective: The objective of this assignment is for students to experiment with variations of the
heapsort algorithm, including a degree-3 heap and variations with and without theO(n) time
“makeHeap” procedure.

High-Level Description: The idea of a binary heap is easy to extend to trees with larger
degree. For any constantk, a degreek max-heap is a completek-ary tree in which the key
at any node is greater than or equal to the keys in all of its children. Here’s an example of a
degree 3 max-heap:

834

712 768

521 801 123

805

306748

Such heaps can be mapped to arrays in a manner similar to what you’ve seen for binary heaps,
and insert and delete operations can still be done inO(log n) time.

Details: On the class web page (and on thecmpunix machine), I have provided you with
code for a binary heap, which basically the code we experimented with in class, but cleaned up
and with comments added. This code includes the functionsbubbleUp andbubbleDown
that operate on standard binary heaps. The first new sorting function you should provide uses
a bubbleUp based technique for creating the heap — in other words, the heap should be
created by doing an “insert” for each data element in which the new element is bubbled up the
heap to the correct location. Note that this replaces theO(n) makeHeap procedure with an
O(n log n) heap construction, so part of this assignment is to see what difference this makes in
practice.

Next, create degree-3 versions of thebubbleUp andbubbleDown functions (sugges-
tion: you could consider calling thesebubbleUp3 andbubbleDown3). Then you can use



2 Handout 9: Assignment 4 — Comparing Heapsort Alternatives

these functions to make two new sorting functions that are similar to your existing binary heap
functions, but using the degree-3 bubbling functions.

In the end, you will have four sorting functions, and they should all take exactly the same
parameters so that you can simply change the name of the function used inmain and re-
compile in order to test the efficiency of the different sorting functions. Please use the names
below (exactly!):

void hsort(int data[], size_t n); // Standard heapsort - provided
void ahsort(int data[], size_t n); // Alt heapsort - using bubbleUp
void hsort3(int data[], size_t n); // Degree 3 heap and makeHeap
void ahsort3(int data[], size_t n); // Degree 3 heap and bubbleUp3

I will test your code by removing yourmain function and inserting my own testing code
to see that your sorting functions are actually sorting properly, so it is vital that you use these
names and exactly these parameters.

When you are developing these sorting functions, you will obviously want to test thor-
oughly by printing out answers and making sure that the sortsare working correctly, but when
all four are working correctly you should remove all print statements and just leave a call to the
sorting function for 2,000,000 items. Run each sorting algorithm five times, using the “time”
command, and record the 5 times in a table (remember to use the“user time”). Then for each
function throw out the lowest and highest times, and averagethe remaining three times, and list
this as the “average time” for the function. Your table should look something like this (these
are completely made-up times — don’t expect them to be anything like the times you get!):

Function Measured Times Average

hsort 1.123 1.119 1.139 1.117 1.121 1.121
ahsort ... ... ... ... ... ...
hsort3 ... ... ... ... ... ...
ahsort3 ... ... ... ... ... ...

Finally, write a short analysis comparing the four functions. Don’t just report your times, but
think about why the different functions behave as they do — inwhat ways is a degree-3 heap
more efficient than a binary heap, and in what ways is it less efficient? What do you think
would happen if you used a degree-4 heap? What about a degree-100 heap?

To Turn In: Use the330submit program (see Handout 3) in order to turn in your code,
using assignment nameassign4. Turn in your table of running times and analysis along
with a printout of your code in class.

Sample Input/Output: There is no sample input/output for this program.


