
University of North Carolina at Greensboro Handout 2
CSC 330: Advanced Data Structures August 26, 2009
Prof. Stephen R. Tate

CSC 330 C++ Coding Style Rules

Major Rules

Each violation of these rules will count 15 points off your final grade on the assignment. That
means that if you have 4 global variables in your program, I’ll immediately knock of60 points.

1. No global variables.

2. All data elements in a class should be private.

3. Never put executable code in a.h header file unless it either (a) is in a template class or
(b) is a very short function that could benefit significantly by “inlining”.

4. Never#include any fileexcept a.h file.

5. Required comments at the top of every file include: your name, a brief (one line) de-
scription of what is in the file, and the last date modified.

Other Rules

These additional rules are not as severe as the rules above, but violations will still result in
some points being taken off.

6. Proper indentation is an absolute must! Use at least 2 characters for each indentation
level, and at most 8 (I think 4 gives a nice indented structure, although I leave this up to
your personal taste).

7. Lines of source code should be at most 80 characters long — lines should not “wrap
around” on printouts.

8. Use whitespace and blank lines to increase readability.

9. Use meaningful but concise names for classes, methods, and variables. Class names and
variables should be nouns and the beginning of new words in a multi-word name should
start with a capital letter (Examples:tree, binaryTree, binarySearchTree,
rightChild, vertexList, etc.). Method and function names should be verbs, start



2 Handout 2: CSC 330 C++ Coding Style Rules

with a lower case letter, and start subsequent words with upper case letters (Examples:
setData(), isEmpty(), andgetNext()). Local variables to a function should
also have meaningful names, with an exception being for simple loop variables (i is ok
for an integer loop,cp for a character pointer, etc.). Note that names from the STL or in
the book don’t always strictly follow these guidelines, butin your own code please try to
be consistent in following these rules.

10. Use modular, multi-file construction with aMakefile. Files to implement a class
myClass should be calledmyClass.h andmyClass.cpp.

11. Use constructors and destructors to make sure objects are initialized properly and dy-
namic storage is returned properly (and be careful to include copy constructors and as-
signment overloads where necessary).

12. Avoid the C preprocessor — useconst andinline as provided by C++ instead.

13. Use operator overloading with care — using overloading for well-understood operations
(like ++ for iterators) is fine, but if you get “creative” in using operator overloading it
just makes your code hard to understand.

14. Variable initialization/declaration: Declare variables as close to their first use a possible,
and initialize them in the declaration. Loop variables thatare only useful inside the loop
should be declared inside thefor statement. Note that the book does not do this —
they use the older “C-style” declarations at the top of a function/block. This is really
“old-school” and should be avoided.

15. Large objects can be passed as arguments as aconst reference — this avoids making a
local copy, and still protects the integrity of the data.

16. Useconst wherever appropriate — this helps the compiler catch mistakes before they
happen.

17. Use parentheses for grouping expressions, especially in cases where precedence is not
obvious.

18. Put comments before each function or method, and at the beginning of each source file.
Your comments should be in “Doxygen style”, which allows a description of your class
to be extracted and formated in HTML. The example code for these style guidelines
shows how these comments should look.

19. Comment unclear parts of the code.


