
1

Cryptography Basics
An overview of cryptography used in trusted computing

Slide 1

Notes for CSC 495 / 680
September 30 – October 1, 2010

What You Should Learn

• Fundamental tools / building blocks:
– Encryption algorithms/types
– Digital signature techniques
– Cryptographic hash functions
– Message authentication codes

Slide 2

• Properties of algorithms used in TPMs
– RSA encryption and signatures
– SHA/1 hashing
– HMAC

• Higher-level functionality
– PKI and user credentials
– Authentication

Cryptography Basics

Confidentiality-oriented model

Channel
M

Message

M
C=E(kA,M)E(kA,M)

kA

(plaintext)

D(kB,C)
k

Eve (eavesdropper)

Slide 3

Cryptography Basics

Alice Bob
ciphertextAlice’s

key

A

Encryption
Function

kB

Bob’s
keyDecryption

Function

Goal: Eve can’t learn anything about M

Basic Concepts

• Kirckhoff’s Principle: Security depends only on strength of
algorithm and secrecy of keys
– Not secrecy of algorithm (security through obscurity)

– Allows standardization of algorithms

– TPMs: Specification/algorithms are public – keys protected

Slide 4

p g p y p

• What keys are secret?
– Symmetric Algorithms: kA=kB is secret

– Asymmetric algorithms: kAkB, and only kB secret
• Also called “public key algorithms”

– Key Management is vital to maintaining security!
• Business issues: Key generation, key certification, key

escrow, rekeying, key revocation, …
Cryptography Basics

Symmetric Encryption
Brief Overview (TPMs do not use symmetric encryption)

• Typically much faster than public key algorithms
– Fast AES (symmetric): ~1.2 GBit/sec on Intel Core 2 6700 (1 thread)
– Fast RSA (public key): ~247 kBit/sec on Intel Core 2 6700 (1 thread)

• Two main types of symmetric algorithms:

Block Ciphers Stream Ciphers

Slide 5

Cryptography Basics

Key

Block
of Bits

Block
of Bits

Blocks typically 64
or 128 bits.

Key

Bits In Bits Out

0110… 1011…

“Immediate”: One bit in
gives one bit out.

Symmetric Encryption – Cont’d

• Important parameters:
– Block size (bs)

– Key size (ks)

• Security:

Slide 6

Security:
– Brute force attacks

• “Keyspace” : number of possible keys (2ks)

• Brute force time proportional to keyspace size

– Cryptanalysis attacks
• Note: Keyspace for simple substitution = 26! ≈ 1026

(approximately 1013 years to break at 106 trials/second)

Cryptography Basics

2

Symmetric Encryption
Widely-used algorithms

Algorithm Block Size (bits) Key Size (bits)

DES 64 56

RC4 Stream 8 to 2048

Blowfish 64 32 to 448

AES 128 128, 192, or 256

Slide 7

, ,

Cryptography Basics

Key Length

(bits)

106 tests

per sec

109 tests

per sec

1012 tests

per sec

56 2283 years 2.28 years 20 hours

80 1013 years 1010 years 107 years

128 1025 years 1022 years 1019 years

Brute force keyspace search time:

How Big is a 128-bit Key?

• 2004 Estimate: $100k machine breaks DES key in 6 hours

• What about a 128-bit key?
– $100k machine takes >1018 years [the earth is <1010 years old]

• What if we spent $100,000,000,000?
– Would take >1012 years

• What about Moore’s law saying that in 20 years machines will

Slide 8

• What about Moore s law saying that in 20 years machines will
be about 16,000 times faster?
– Would take >108 years

• OK, what about in 40 years (machines 100 million times faster)?
– Would still take >30,000 years
– Do you really think Moore’s law will last this long?

• What about improvements in cryptanalysis or super-duper
quantum computers?
– This could change everything....

Cryptography Basics

Public Key Algorithms

• Idea due to Diffie and Hellman in 1976
– Maybe not the first! British declassified documents showing they

were using this in the early 1970’s!

• Different encryption and decryption keys
– Decryption key difficult to compute from encryption key

Slide 9

yp y p yp y

– Relationship between keys depends on secret knowledge
(“trapdoor”) known only to key generator

– Public key can be widely published

• Security based on some explicitly-stated mathematical
problem which is assumed hard
– Note: Like all crypto, based on assumptions!

Cryptography Basics

Public Key Algorithms – Cont’d

• RSA (Named after Rivest, Shamir, Adelman):
– First generally useful public key algorithm (1977)

– Security based on assumed difficulty of factoring

– Used in TPMs

• El Gamal

Slide 10

• El Gamal
– Based on original ideas of Diffie and Hellman

– Security based on assumed difficulty of discrete log

• Elliptic Curve Cryptography (ECC)
– Newer construct – El Gamal over different group

– Seems to have comparable security to RSA and El Gamal with
much fewer bits of key

Cryptography Basics

Public Key Algorithms – Cont’d

• Unlike symmetric algorithms, breaking related to well-defined
mathematical problems
– Breaking typically more efficient than brute force

• RSA “challenge key” of 768 bits factored
– Completed December 2009

Took o er t o ears sing “man h ndreds of machines”

Slide 11

– Took over two years using “many hundreds of machines”

• “Safe” key sizes:
– RSA and El Gamal: 1024 bits OK for casual use - 2048 if paranoid
– ECC: 160 bits (211 if paranoid)

• Warning: Algorithmic improvements very hard to predict!
– Example: In 1977 Rivest predicted that a 129 digit (approx 430 bits)

would take 40 quadrillion (40 x 1015) years to break – but broken in 1994!

Cryptography Basics

Public Key Algorithms – RSA

• RSA is the most widely-used public key algorithm

• Based on doing modular arithmetic (“mod n”)
– Recall: “mod n” means remainder when divide by n
– Examples:

• 24+27 mod 35 = 16

Slide 12

• 24+27 mod 35 = 16
• 15·10 mod 35 = 10
• 26 mod 35 = 29

• In RSA, n is the product of two primes (n=pq)
– 2048-bit RSA has p and q each about 1024 bits
– These are huge numbers!

• n is around 22048 – remember how big 2128 is!?!?
• Number of atoms in the observable universe is about 2265

Cryptography Basics

3

Public Key Algorithms – RSA

• We don’t need all the math behind RSA
– It’s really not that difficult, and available from many sources…

• Fact: If e is relatively prime to (p-1)*(q-1) then there exists
a d such that:

Slide 13

– For any M, if C = Me mod n, then M = Cd mod n
• So (e,n) is the public key, d is the private key
• E(M) = Me mod n and D(C) = Cd mod n

– There is an efficient algorithm to compute d from e, p, and q

– Seems intractable to compute d from e and n without p and q

– So… it seems that computing d is equivalent to factoring n
• Not known to be equivalent
• People have studied factoring for centuries – but no fast algorithms!

Cryptography Basics

Public Key Algorithms – RSA

• An example with small numbers: n = 7·11 = 77
– (p-1)(q-1) = 6·10 = 60, and e=7 is relatively prime to (p-1)(q-1)

– Corresponding d is 43

• An encryption/decryption example

Slide 14

– M=5 → 57 mod 77 = 78125 mod 77 = 47

4743 mod 77 = 5

Note that 4743 is a 71 digit number!!! Use efficient algorithms!

• Think about with RSA-size numbers (2048 bit key)
– d is typically also 2048 bits

– So Cd would be 22059 bits!?! Could you store this?

Cryptography Basics

Public Key Algorithms – RSA

• In practice…
– Don’t use simple RSA formula for encryption

– Randomly pad in special ways to increase security
• OAEP: Optimal Asymmetric Encryption Padding

• PKCS #1: An older padding method

Slide 15

• Efficiency issues:
– If n is chosen appropriately, can always use e=3 or e=65537

• These values make encryption much faster

• M65537 mod n = M216+1 mod n = M · (M216) mod n
– This takes only 17 modular multiplications

– Decryption (or using random e) requires on avg 3072 mod mults

• TPMs use (by default) e = 65537

Cryptography Basics

Public Key + Symmetric

• Problem: Public key systems are powerful but slow,
while symmetric systems are inflexible but fast

• Solution: A hybrid system!
1. Sender generates random symmetric session key

Slide 16

2. Sender encrypts session key using PK crypto

3. Sender encrypts message using session key (and symmetric
cipher)

• Result: A fast, flexible system

Cryptography Basics

Digital Signatures

• Remember: Only Bob (with secret key) can compute
decrypt function

• Idea: Run plaintext through decryption function!
– Property: Everyone can verify with the encryption function and

public key!

Slide 17

– Problem: plaintext and ciphertext domains might be different,
making this impossible

• Works for RSA where E(k, D(k, P)) = P = D(k, E(k, P))

• Some signature-specific algorithms (non encryption)
– El Gamal signatures (related to El Gamal encryption, but a

different algorithm)

– DSA/DSS (Digital Signature Algorithm/Standard)
• One advantage: Compact signatures (320 bits)

Cryptography Basics

Cryptographic Hash Functions

• Given an arbitrary-length message M, produces a fixed-
length “message digest” h(M)

• Desired properties:
– Given y, can’t find an M such that h(M)=y (one-way function)
– Given M1, can’t find an M2 such that h(M1)=h(M2)

(W k lli i i)

Slide 18

• (Weak collision resistance)

– Can’t find any two M1 and M2 such that h(M1)=h(M2)
• (Strong collision resistance)

• Widely used:
– MD5 (128 bit digest) – as of August 2004: Don’t use this!

(doesn’t exhibit strong collision resistance)
– SHA1 (160 bit digest) – used in TPMs
– SHA-256 (256 bit digest) – also SHA-384 and SHA-512

Cryptography Basics

4

Examples of Hash Function Usage

• File integrity (or file identification)
– If a file changes, its hash should change

• For accidental changes, checksums have done this
• For malicious changes, need a cryptographic hash

– Collision resistant properties says can’t practically tamper and not
disrupt hash value

– However: if strong collision resistance isn’t provided then no

Slide 19

However: if strong collision resistance isn t provided, then no
guarantees (so don’t use MD5)

• Used by almost all anti-virus systems
– Identification: Hash values are unique for real files, so there are

databases (built in to many forensics tools) that identify files based on
hash value

• Key derivation
– People remember English phrases
– Cryptographic functions need keys that are binary strings
– A hash function does the mapping!

Cryptography Basics

Use of Hash Functions in TPMs
Passphrase to secret mapping

• “Authentication Secrets” (owner auth, key auth) are 160-bits

• Mapping of a string passphrase to 160-bit secret:
secret = SHA1(passphrase)

• Simple right? But What is “passphrase”??

Slide 20

Simple, right? But…. What is passphrase ??
– Infineon uses a UTF16LE (little endian) string

– TSS says use UTF16BE (big endian) string

– IBM TPM Tools use an ASCII string

– Include or don’t include null terminator when hashing?

• So: passphrase created using one software library might not
work in applications using a different library…

Cryptography Basics

Use of Hash Functions in TPMs
Platform Configuration Registers (PCRs) for Integrity Measurement

• “Platform Configuration Registers” contain 160-bit measurements
– 16 PCRs (PCR0 .. PCR15) can only be reset by system reset

– Can only be extended with new values: PCRi ← SHA1(PCRi || newValue)

• So:
– System first extends PCR0 with initial BIOS code

(concatenation)

Slide 21

System first extends PCR0 with initial BIOS code

– BIOS extends this with measurement of POST code, platform extensions, …

– Measures other boot code (boot sector, OS, etc.) into other PCRs

• What can malicious code do?
– Can’t reset PCRs to load with faked values (hardware protection)

– Can’t extend PCR to get a faked value
• Would require finding value such that DesiredPCRi = SHA1(CurrentPCRi || value) –

impractical due to weak collision resistance

Cryptography Basics

Hash Functions + Signatures

• Problem: Don’t want to run long message through (slow)
digital signature algorithm

• Solution:
1. Compute digest of message: y=h(M)
2 Sign digest: s=sign(k y)

Slide 22

2. Sign digest: s=sign(k,y)
3. Transmit triple: (M,y,s) [y redundant, so optional]

• Key Property:
– s is signature for any message with h(M’)=y, but if hash

function is secure, can’t find such an M’
– Note: if strong collision avoidance fails, can find two M’s with

the same hash (so same signature!)
• So remember: Don’t use MD5!

Cryptography Basics

Message Authentication Codes (MACs)
Keyed Hash Functions

• Idea: How to ensure a message comes from someone
you share a key with?
– Anyone can compute a hash (or re-compute)

– Must use a secret key in a meaningful way

Slide 23

• Common techniques:
– HMAC: MAC based on a hash function (TPMs use HMAC)

• Can “plug in” any cryptographic hash
• If one turns out to be weak, just replace with another

– Using a symmetric cipher in a chained mode (like CBC)
• Standardized in ANSI X9.9: “American National Standard for

Financial Institution Message Authentication” (also ISO 8730)

Cryptography Basics

MACs for Authentication

• Basic (insecure):

– Can increase security with good encryption

“Hi – I’m Alice and my
password is OpenSesame”

Alice Server
Can keep
database
of hashed
passwords

Slide 24

y g yp

• MAC-based (avoids replay attacks):

Alice Server1) Random challenge (“nonce”)

2) ID, MAC(PassKey, nonce)

Needs to
keep plaintext

passwords

(perhaps a hash of password)

5

MACs in TPMs

• TPMs use HMAC with SHA1 to authenticate commands

• Example: Consider an owner-authenticated command
– Along with command pass HMAC(ownerSecret, command)

– So: Can be computed only w/knowledge of ownerSecret

Slide 25

So: Can be computed only w/knowledge of ownerSecret

– And: Command can’t be modified between owner and TPM

• Not quite this simple…
– Not all fields of command are hashed

– Combined with MAC from previous commands to chain commands

Cryptography Basics

Example from a TPM Command

• Sample command from spec (input data):

Slide 26

A Problem with Signatures

• What does a public-key signature verification tell you?
Verification parameters include public key, and successful verification
says “Only someone holding the corresponding private key could have
made this signature.”

Slide 27

• What do you want a signature verification to tell you?
Probably something like “Joe Smith signed this.”

• Problem: What assurance do you have that the public
key really belongs to Joe Smith?

What is a Digital Certificate?

• Associates an identity/properties with a public key
– Identity can be person’s name, website, e-mail, ...

– Properties can be valid key uses, age of individual, access rights
granted, …

• Signed by someone you trust

Slide 28

• Signed by someone you trust
– Signature is trusted party vouching for ID/key pair

– Role is similar to a notary public

• Some typical properties of certificates:
– Good for a set time (validity period)

• Must get a new certificate after expiration

– Certificates may be revoked

More on Certificates

• Common types of certificates:
– X.509 standard (version 3)

– PGP certificates

• Who signs certificates? Several possibilities:

Slide 29

– Independent “Certification Authority” organization

• Disinterested third party – company or government

• Examples: Verisign, Deutsche Telekom, Entrust, AOL, …

– Internal (organizational) certification authority

• Organization controls certificates for employees or clients

– Could be just an individual you trust

• This is how PGP certificates are typically certified

Certificate Chains

Subject: UNCG CSC CA

UNCG CSC Public Key

Issuer: UNCG CA

Subject: Verisign

Verisign Public Key

Issuer: Verisign (trusted)

“Trust Anchor” or “Root CA”

Slide 30

Issuer: UNCG CA

Subject: Steve Tate

Steve’s Public Key

Issuer: UNCG CSC CA

Subject: UNCG CA

UNCG Public Key

Issuer: Verisign

Signs

Signs
Signs

6

Uses of Certificates in a TPM
Certifying the Endorsement Key

• If TPM specification is open, how can we tell if we are
interacting with a real TPM or a software simulator (or a
“Trojan TPM”)?

• Each TPM contains a special “Endorsement Key” (EK)

Slide 31

Each TPM contains a special Endorsement Key (EK)
– Unique to each TPM

• So if one is revealed, only that one TPM is compromised

– Private part of EK never leaves TPM

– Public part certified by manufacturer as a valid TPM-bound key

– So: Manufacturers are CAs for integrity of TPM EKs

Cryptography Basics

Uses of Certificates in a TPM
Certifying Attestation Identity Keys (PrivacyCAs)

• Privacy Issue: Doesn’t EK identify a system?
– Yes, it does!

• Solution:
– TPMs can create Attestation Identity Keys (AIKs)

• Key is created in cooperation with a “PrivacyCA”

Slide 32

• EK is used in transaction, and PrivacyCA verifies EK certificate
• Resulting AIK is issued a certificate by PrivacyCA

– Idea: Only a valid TPM can do this (uses EK), and an honest
PrivacyCA will only certify properly-constructed keys

– Problems:
• PrivacyCA must be known and trusted by all
• PrivacyCA can link all “pseudonyms” together by EK

– In version 1.2: Direct Anonymous Attestation (DAA) has
stronger privacy guarantees

Cryptography Basics

