
The University of North Carolina at Greensboro Handout 3
CSC 495/680: Trusted Computing October 4, 2010
Prof. Stephen R. Tate

CSC 495/680 Assignment 2
Due Wednesday, October 20

Objective: The purpose of this assignment is to get students some experience with pro-
gramming using the Trusted Software Stack (TSS), and to experiment with keys and basic
bind/unbind functionality.

System and Compilation/Linking Information: There are several sample programs on the
SPAN systems in/scratch/csc495 that contain useful bits of code that you can use in
your assignment — be sure to read through that code and understand what is there before you
start coding your programs for this assignment. There are also a lot of good examples of code
in Chapters 7 and 8 of the book. For detailed documentation onspecific TSS functions, refer
either to the man pages on the SPAN lab systems or to the TSS specification (link on the class
web page).

The standard TSS library in Linux is called “TrouSerS” and towrite a program using this
library, you must make sure you have the appropriate includes and library designations. For
include files, you should always include<tss/tspi.h> and<trousers/trousers.h>
— note that only the first of these is necessary for standard TSS programs, but the second one
allows you to use the TrouSerS error code to printable stringfunctions, which makes error
messages much more understandable. For library linking, besure to include “-ltspi” when
you compile. For example, to compile the sample programnewkey-uuid.c first copy it to
a directory you can work in, such as your home directory, and then use the command

gcc -Wall -o newkey-uuid newkey-uuid.c -ltspi

Background Trusted Computing Information: There are two main ways to manage keys
for use by the TPM: One way is to keep keys in the TSS-managed key ring (or “persistent
storage”), registered by a 128-bit UUID, and then any program can load and use the keys by
using this UUID. The second way is to store keys in files that are managed outside of the TSS
library.

The TSS specification describes a standard key hierarchy — the pages of the specification
describing this are distributed with this assignment in class, and if you’re reading this elec-
tronically you can find this in Section 3.22 (KeyManagement)of the TSS specification (pages
143–145 of the “Errata A” version available on the class web page). Thelabhost systems
in the SPAN Lab have the required “System Persistent” keys established on each system, al-
though the optional “PK” key is not used (so “SK” and “RK” are directly below the SRK).



2 Handout 3: CSC 495/680 Assignment 2

The UUIDs for these keys are defined in TrouSerS as initializers for a UUID object, and have
the names “TSS UUID SK” and “TSS UUID RK”. Note that thelabhost systems require
authentication on the SRK, but it is authentication with the“well-known secret” — you can
see how this is handled in thenewkey-uuid.c example.1 The SK and RK are different —
those keys do not require authorization at all.

Thenewkey-uuid.c example creates a non-migratable bind key underneath the SK, and
registers the key using a random UUID that is hard-coded in the source code. Make sure you
read and understand that example before moving on with the rest of this assignment.

Exercises: This section describes the programs you should write as partof this assignment.
After you’re sure that your program is running correctly, time how long it takes using the
“time” command (e.g., to time thenewkey-uuid program you’d type the commandtime
./newkey-uuid — it’s the “real” time that you want to record). You’ll need touse these
times to answer the questions below. When you turn in your assignment, turn in a printout of the
sourcecode, and in addition email all three programs to me (one email with three attachments,
please!).

Program 1:The first program you should write for this assignment is to create a “bind” key
and store it in a file. The section on “Key Objects” in Chapter 7of the book describes how to
extract a “key blob” from a key object, and this key blob can then be written out to a file. Your
program can either get the name of the output file from the command line or can prompt the
user to enter it, but it should not be hard-coded in your program (in other words, you should be
able to run your program twice to create two keys stored in different files). The key you create
should be a 2048-bit, non-migratable, bind key, with SK as its parent. No keys should require
authorization for use.

Program 2:Next, you should write a program that uses TPM-generated keys to encrypt a small
amount of data using a “bind” key. Your program should be ableto handle using either the bind
key generated by the samplenewkey-uuid.c program (and registered in user persistent
storage) or the key generated by your first program (and stored in a file). You can determine
which key to use either through a command line switch or by prompting the user. The input
data (i.e., the data you want to encrypt) should be read from afile, and the output ciphertext
should be written to a file. As with other parameters, you are free to have your program get
the filenames either from the command line or by prompting theuser. The Chapter 7 section
“Encrypted Data Objects” gives the basic information on howto perform the bind operation.

Program 3:The third program is the unbind (unencrypt) partner to Program 2 — it should use
a bind key to decrypt ciphertext produced by the previous program. The structure is the same

1Note that this isn’t actually standard, as the TSS spec says the SRK should not require authorization. However,
it isn’t quite as simple as that either — a TPM in “FIPS mode” requires authentication of the SRK, and the sample
storage hierarchies described in Chapter 3 of the book talk about the SRK using the “well-known secret” for
authorization. The SRK configuration in the lab follows the ideas from Chapter 3 of the book rather than the TSS
specification, since that can be use in either FIPS mode or non-FIPS mode.



Handout 3: CSC 495/680 Assignment 2 3

as the encryption program: you should read the ciphertext from a file and write the plaintext
out to another file. The book does not have an example of this, but you should be able to figure
this out from the techniques you used in the previous program. In particular, you will need to
set the encrypted data blob attribute, and then call the Unbind function. Remember that you
can find the exact arguments in the man pages (“man Tspi Data Unbind”).

Final Activity: Once all three programs are written, compiled, and debugged, you should have
all of the code (source and binary) in your home directory (ora subdirectory), along with
some sample data files (original plaintext, ciphertext, andrecovered plaintext). Now log in to a
different SPANlabhost machine. Use theshowkeys program from the samples directory
to see what keys are registered on this machine. Try to use your “unbind” program to decrypt
your ciphertext file on the new machine. You’ll be asked to describe and interpret the results
below in the questions.

Questions: Answer the following questions.

1. When using keys that are stored in the two ways explored here (by UUID in persistent
storage vs. in an external file) the most obvious difference is in the use of the func-
tionTspi Context LoadKeyByUUID versusTspi Context LoadKeyByBlob.
What other differences were there? Which was easier code to write?

2. One disadvantage of using UUIDs is that 128-binary valuesare not easy to remember
or to specify from a user’s standpoint. If the UUID hadn’t been hardcoded into the
sourcecode, you’d need some way for a user to specify the UUIDof the key — clearly
this is a challenge! Can you think of a solution that providesa “user-friendly” way of
referring to keys, and yet uses the nice key management abilities of the TSS persistent
storage?

3. Run unbind twice in a row on the same ciphertext, and measure the time of both runs.
Was there any difference? Was this what you expected? After your tests, runshowkeys
from the sample programs, which lists all of the keys currently in persistent storage.
What does the “isLoaded” column show? Can you describe any efficiency improvements
to the way TrouSerS implements the functions that you’re using?

4. Describe what happened (and why) when you tried to decryptthe ciphertext on another
system (the “Final Activity” above)?

5. The “Roaming Key” (RK) is potentially promising for such situations: Keys below RK
are migratable, and so could potentially be used on multiplesystems. Here is one solution
(call this “Solution 1”): a migratable key could be created under RK on one host, and
then the migration process could be performed for each otherhost so that the key had a
distinct re-wrapping underneath each system’s RK. Therefore, each system would have
its own version of the key that it was able to load. For “Solution 2” I give only a hint:



4 Handout 3: CSC 495/680 Assignment 2

What if the RK itself were migrated among systems within an organization so that it
was the same key on each system (although wrapped differently)? Carefully describe
how such a solution would work — specifically describe how three things work: (1) how
does the organization initialize a new system, (2) how does auser create a new key, and
(3) how does a user use one of their keys. Be sure to address issues such as how keys are
referred to (what UUID), how parent keys are located on each system, etc.

Finally, consider a case in which there are 100 systems on a corporate intranet, with 70
distinct users, each with 10 keys. How many total keys must bemanaged in “Solution
1”? What about in “Solution 2”?

6. One weakness of “Solution 2” in the previous question is that migration of RK must be
very tightly controlled. What is the risk if an untrustworthy person has access to and can
control the migration process for RK?

7. Consider a case in which I’m a user in an organization that has adopted “Solution 2”
from above, but I don’t trust the system administrator who controls the “RK” roaming
key. Devise a solution (called “Solution 3”) that the user controls, but which has many of
the same properties as “Solution 2” (most importantly that the same key blob can be used
on multiple systems). Using the numbers from above, if each of the 70 users manages
their keys by this new solution, how many total keys are therenow? What can or can’t a
dishonest system administrator do in this situation?

8. The Bind operation uses only the public part of the bind keythat was generated by
Program 1. Since this is public, it should be possible to do the Bind operation on any
system — not just the system that generated the key. Test thisout: try to run your bind
program on a different host. Does it work? If it doesn’t work,can you think of a way to
make it work? (See also the optional exercises below)

Optional Exercises: The following exercises are optional, but will give you moreexperience
programming for the TSS. They also can provide a small amountof extra credit (5 points each).

1. Adapt your “bind” program so that it works on any system (with bind keys that are stored
in files).

2. Add support for attaching usage authorization to the keysyou create (and then, of course,
you’ll need support in your other programs so that the authorization can be provided
when the key is used).


