The University of North Carolina at Greensboro Handout 3
CSC 495/680: Trusted Computing October 4, 2010
Prof. Stephen R. Tate

CSC 495/680 Assignment 2
Due Wednesday, October 20

Objective: The purpose of this assignment is to get students some experiwith pro-
gramming using the Trusted Software Stack (TSS), and torewpat with keys and basic
bind/unbind functionality.

System and Compilation/Linking Information: There are several sample programs on the
SPAN systems it scr at ch/ csc495 that contain useful bits of code that you can use in
your assignment — be sure to read through that code and wadénshat is there before you
start coding your programs for this assignment. There a@alot of good examples of code
in Chapters 7 and 8 of the book. For detailed documentatiospenific TSS functions, refer
either to the man pages on the SPAN lab systems or to the T$8isgigon (link on the class
web page).

The standard TSS library in Linux is called “TrouSerS” andwviite a program using this
library, you must make sure you have the appropriate incluatal library designations. For
include files, you should always inclugéss/ t spi . h>and<t r ouser s/ trousers. h>
— note that only the first of these is necessary for standad@r8grams, but the second one
allows you to use the TrouSerS error code to printable stiumgtions, which makes error
messages much more understandable. For library linkingubeeto include <1 t spi ” when
you compile. For example, to compile the sample prognawkey- uui d. c first copy it to
a directory you can work in, such as your home directory, &ed use the command

gcc -Wall -0 newkey-uuid newkey-uuid.c -I|tspi

Background Trusted Computing Information: There are two main ways to manage keys
for use by the TPM: One way is to keep keys in the TSS-managgdikeg (or “persistent
storage”), registered by a 128-bit UUID, and then any progcan load and use the keys by
using this UUID. The second way is to store keys in files thatraanaged outside of the TSS
library.

The TSS specification describes a standard key hierarchye-pabes of the specification
describing this are distributed with this assignment irsgJaand if you're reading this elec-
tronically you can find this in Section 3.22 (KeyManageme@fthe TSS specification (pages
143-145 of the “Errata A’ version available on the class wagg). Thd abhost systems
in the SPAN Lab have the required “System Persistent” ketabéshed on each system, al-
though the optional “PK” key is not used (so “SK” and “RK” areettly below the SRK).

2 Handout 3: CSC 495/680 Assignment 2

The UUIDs for these keys are defined in TrouSerS as initiedifr a UUID object, and have
the names TSS_UUI D_SK” and “TSS_UUI D_RK". Note that thel abhost systems require
authentication on the SRK, but it is authentication with ‘thvell-known secret” — you can
see how this is handled in tmewkey- uui d. c example! The SK and RK are different —
those keys do not require authorization at all.

Thenewkey- uui d. c example creates a non-migratable bind key underneath thargkK
registers the key using a random UUID that is hard-codederstiurce code. Make sure you
read and understand that example before moving on with gtef¢his assignment.

Exercises. This section describes the programs you should write asgbdhis assignment.
After you're sure that your program is running correctlyné how long it takes using the
“t i me” command (e.g., to time theewkey- uui d program you'd type the commard ne

. I newkey- uui d — it’s the “real” time that you want to record). You'll need tse these
times to answer the questions below. When you turn in yougas®ent, turn in a printout of the
sourcecode, and in addition email all three programs to me émail with three attachments,
please!).

Program 1:The first program you should write for this assignment is &ate a “bind” key
and store it in a file. The section on “Key Objects” in Chaptef the book describes how to
extract a “key blob” from a key object, and this key blob cagrtive written out to a file. Your
program can either get the name of the output file from the canthiine or can prompt the
user to enter it, but it should not be hard-coded in your @ogfin other words, you should be
able to run your program twice to create two keys stored ifedht files). The key you create
should be a 2048-bit, non-migratable, bind key, with SK apérent. No keys should require
authorization for use.

Program 2:Next, you should write a program that uses TPM-generates tcegncrypt a small
amount of data using a “bind” key. Your program should be &leandle using either the bind
key generated by the samphewkey- uui d. ¢ program (and registered in user persistent
storage) or the key generated by your first program (anddiara file). You can determine
which key to use either through a command line switch or bynmting the user. The input
data (i.e., the data you want to encrypt) should be read frdie,aand the output ciphertext
should be written to a file. As with other parameters, you ege fo have your program get
the filenames either from the command line or by promptinguser. The Chapter 7 section
“Encrypted Data Objects” gives the basic information on howerform the bind operation.

Program 3:The third program is the unbind (unencrypt) partner to Paog2 — it should use
a bind key to decrypt ciphertext produced by the previouganm. The structure is the same

I'Note that this isn’'t actually standard, as the TSS spec a&ySRK should not require authorization. However,
itisn’t quite as simple as that either — a TPM in “FIPS modejuiges authentication of the SRK, and the sample
storage hierarchies described in Chapter 3 of the book tatkitathe SRK using the “well-known secret” for
authorization. The SRK configuration in the lab follows tteas from Chapter 3 of the book rather than the TSS
specification, since that can be use in either FIPS mode oFti®8 mode.

Handout 3: CSC 495/680 Assignment 2 3

as the encryption program: you should read the ciphertext fa file and write the plaintext
out to another file. The book does not have an example of thigjdu should be able to figure
this out from the techniques you used in the previous progtarparticular, you will need to

set the encrypted data blob attribute, and then call the rdhhinction. Remember that you
can find the exact arguments in the man pageait* Tspi _Dat a_Unbi nd”).

Final Activity: Once all three programs are written, compiled, and debuggrdshould have
all of the code (source and binary) in your home directorygaubdirectory), along with
some sample data files (original plaintext, ciphertext, @odvered plaintext). Now loginto a
different SPANI abhost machine. Use thehowkeys program from the samples directory
to see what keys are registered on this machine. Try to use*yohbind” program to decrypt
your ciphertext file on the new machine. You'll be asked tocdbg and interpret the results
below in the questions.

Questions: Answer the following questions.

1. When using keys that are stored in the two ways exploreel ffr UUID in persistent
storage vs. in an external file) the most obvious differesca ithe use of the func-
tionTspi _Cont ext LoadKeyByUUl DversusTspi _Cont ext LoadKeyByBI ob.
What other differences were there? Which was easier codeitiswv

2. One disadvantage of using UUIDs is that 128-binary vaaresnot easy to remember
or to specify from a user’s standpoint. If the UUID hadn’t begsardcoded into the
sourcecode, you'd need some way for a user to specify the Wibe key — clearly
this is a challenge! Can you think of a solution that providésiser-friendly” way of
referring to keys, and yet uses the nice key managementiebitif the TSS persistent
storage?

3. Run unbind twice in a row on the same ciphertext, and measertime of both runs.
Was there any difference? Was this what you expected? Adtartgsts, rushowkeys
from the sample programs, which lists all of the keys culyemmt persistent storage.
What does the “isLoaded” column show? Can you describe digyegicy improvements
to the way TrouSerS implements the functions that you'rag/®i

4. Describe what happened (and why) when you tried to detingptiphertext on another
system (the “Final Activity” above)?

5. The “Roaming Key” (RK) is potentially promising for suchuations: Keys below RK
are migratable, and so could potentially be used on mukiydéems. Here is one solution
(call this “Solution 1”): a migratable key could be createttlar RK on one host, and
then the migration process could be performed for each dibstrso that the key had a
distinct re-wrapping underneath each system’s RK. Thezefeach system would have
its own version of the key that it was able to load. For “SantR” | give only a hint:

4 Handout 3: CSC 495/680 Assignment 2

What if the RK itself were migrated among systems within agaoization so that it
was the same key on each system (although wrapped diffgfen@arefully describe
how such a solution would work — specifically describe hove#things work: (1) how
does the organization initialize a new system, (2) how daesea create a new key, and
(3) how does a user use one of their keys. Be sure to addregsissch as how keys are
referred to (what UUID), how parent keys are located on egstem, etc.

Finally, consider a case in which there are 100 systems omp@i@ie intranet, with 70
distinct users, each with 10 keys. How many total keys mushbeaged in “Solution
1"? What about in “Solution 2"?

6. One weakness of “Solution 2” in the previous question @ thigration of RK must be
very tightly controlled. What is the risk if an untrustwoytherson has access to and can
control the migration process for RK?

7. Consider a case in which I'm a user in an organization thatddopted “Solution 2”
from above, but | don'’t trust the system administrator whotoas the “RK” roaming
key. Devise a solution (called “Solution 3”) that the usemtrols, but which has many of
the same properties as “Solution 2” (most importantly thatdame key blob can be used
on multiple systems). Using the numbers from above, if ed¢he70 users manages
their keys by this new solution, how many total keys are timeng? What can or can’t a
dishonest system administrator do in this situation?

8. The Bind operation uses only the public part of the bind #eat was generated by
Program 1. Since this is public, it should be possible to @oBnd operation on any
system — not just the system that generated the key. Testuhigry to run your bind
program on a different host. Does it work? If it doesn’t wazkin you think of a way to
make it work? (See also the optional exercises below)

Optional Exercises: The following exercises are optional, but will give you mesgerience
programming for the TSS. They also can provide a small amaofueXtra credit (5 points each).

1. Adapt your “bind” program so that it works on any systemtkvaind keys that are stored
in files).

2. Add support for attaching usage authorization to the keyscreate (and then, of course,
you’ll need support in your other programs so that the authtion can be provided
when the key is used).

