
The University of North Carolina at Greensboro Handout 5
CSC 495/680: Trusted Computing November 1, 2010
Prof. Stephen R. Tate

CSC 495/680 Assignment 3
Due Monday, November 15

Objective: To experiment with and learn about key migration, both of regular keys and the
newer certifiable migratable keys (CMKs) supported by version 1.2 TPMs.

Exercises: For this assignment, you are to write four programs which will enable you to create
a migratable bind key and migrate it from one system to another — to show that this worked,
you will encrypt (bind) some test data using this key on one system, and then show that you
can decrypt it on two different systems. The migratable bindkey will be a child of the non-
migratable system key (“SK”) on each system that it resides on.

Program 1: A program to create a migratable bind key.In your last assignment, you wrote a
program to create a non-migratable bind key underneath SK, and then save that key blob to
a file. For program 1, you should modify this program so that itcreates amigratable key —
if you didn’t get this completed in the last assignment, you can use my solution to the last
assignment, which is available in/scratch/495/newkey-file.c.

Your migratable key should use a simple but non-trivial migration auth secret (in other
words, don’t use the “well known secret”). You can either prompt the user to enter the mi-
gration secret, or you can simply use a hard-coded value. In order to set this up, you will
need to make three TSS calls between when the key object is created and when you call
Tspi Key CreateKey to actually create the key. When you create the key object, it does
not have a migration policy associated with it — so you first need to create a migration pol-
icy. To do this, useTspi Context CreateObject to make a policy object with subtype
TSS POLICY MIGRATION. Next, useTspi Policy AssignToObject to assign your
new policy object to the key object. And then finally, useTspi Policy SetSecret to set
the secret in the migration policy — useTSS SECRET MODE PLAIN for the secret mode. For
details on how to use these functions, consult the handy-dandy man pages.

Program 2: A program to extract a systems “SK” to a file.In order to migrate a key, you need
to have a “destination key.” This can be the key of a migrationauthority, or the new parent of
the key on the destination system. However, the important part is that it is a key from aremote
system — not the one you are currently working on! In this assignment, you are to migrate
your key to underneath the SK of a different system, so we needto export a copy of the public
key to use in the migration process.

A fairly simple modification to thenewkey-file.c program will do what you need



2 Handout 5: CSC 495/680 Assignment 3

here — that program already loads the SK, and has code for extracting a key blob and writ-
ing it to a file. Just modify the program so that it doesn’t create a new key, but rather just
extracts the key blob from the SK and then writes that to a file.You could then, for ex-
ample, run this onlabhost7 and extract the SK to save it in a file named something like
labhost7-sk.dat. That file can then be used as the “destination key” if you create your
migration blob onlabhost6.

Program 3: A program to create a migration blob to start the migration process from the orig-
inal system.This program should take the migratable key produced by Program 1, and the
destination key saved by Program 2, and create a migration blob (both “blob” and “random”
parts) so the migratable key can be moved to the system that produced the destination key file.
The main function you will use for this isTspi Key CreateMigrationBlob, although
you will first have to create an authorization ticket (see below). Note that for our simple sce-
nario youcould use theTSS MS REWRAP scheme; however, to illustrate the more powerful
migration capabilities, your program should useTSS MS MIGRATE.

Creating an authorization ticket usingTspi TPM AuthorizeMigrationTicket is a
little tricky, because it is an owner-authorized command — that means you have to first get the
TPM object and then set the usage policy for the TPM to the owner secret. What makes this
difficult is that the systems in the lab all use an owner secretwritten in Unicode (as the TSS
standard specifies), and Unicode is somewhat difficult to work with in C — fortunately, the
Trousers library provides a function to make this easier. Unfortunately, it’s not documented.
To avoid unnecessary difficulty in figuring this out, I’ll just give you the code:

char ownerSecret[] = "SPANOwner";

res = Tspi_Context_GetTpmObject(hContext, &hTPM);
checkres(res, "GetTpmObject");

res = Tspi_GetPolicyObject(hTPM, TSS_POLICY_USAGE, &hOwnerSecret);
checkres(res, "GetPolicyObject-TPM");

UINT32 ownerSecretLen = strlen(ownerSecret);
BYTE *unicodeSecret = Trspi_Native_To_UNICODE((BYTE *)ownerSecret,

&ownerSecretLen);

res = Tspi_Policy_SetSecret(hOwnerSecret, TSS_SECRET_MODE_PLAIN,
ownerSecretLen-2,
(BYTE *)unicodeSecret);

checkres(res, "SetSecret-TPM");

Program 4: A program to convert a migration blob to install the migratable key on a new
system.The final program to write will take the key blob and random parts from Program 3,



Handout 5: CSC 495/680 Assignment 3 3

and install the key on the destination system usingTspi Key ConvertMigrationBlob.
Once that function is called and you have converted the key, you get get the key blob from your
newly-converted key, and save it to a file (again, thenewkey-file.c program has code that
helps out!).

Final activity: Test it! Assuming you’ve got all of the previous programs running properly,
you can follow this sequence of operations to test that everything works together — I’ll use
labhost6 as the source host andlabhost7 as the destination host, but you can use any
two hosts that you’d like. I would like you to turn in a record showing your actions in this part
— an easy way to do this is with thescript program on the labhost machines.

Here is a sequence of operations for testing: First, run Program 2 onlabhost7 to save that
systems SK to a filelabhost7-sk.dat. Next, log in tolabhost6, and use Program 1 to
create a migratable bind key, and save it in a file named something likelabhost6-bindkey.dat.
Now use Program 3 onlabhost6 in order to create a pair of files (blob and random) with the
previously-savedlabhost7-sk.dat as the destination key. While you are still logged in to
labhost6, create a simple (and short – under 20 bytes) test input file, and use the “bind” pro-
gram from your previous assignment (or my solution) to encrypt this file. Call the encrypted file
something like textttencrypted.dat. Now use “unbind” fromthe previous assignment to decrypt
this withlabhost6-bindkey.dat and make sure you get back the original data. Finally,
log back in to labhost7, and use Program 4 to complete the migration process, and create a
migrated copy of the bind key in a file named something likelabhost7-bindkey.dat.
Check that this file is a correctly migrated key by using “unbind” from the previous assignment
and thelabhost7-bindkey.dat to decrypt the same encrypted file that you created on
labhost6.

If you could decrypt this encrypted file on bothlabhost6 andlabhost7, then congrat-
ulations! You have just migrated a TPM key!

For the exercises part of this assignment, email me the sourcecode for all 4 of your pro-
grams, and print out all the source code as well as the recorded interaction in the final activity
to turn in during class.

Questions: To consider key management in some realistic settings, answer the following ques-
tions.

1. Consider the following scenario: You are working for a company, and the company’s
system administrator (or system administration group) controls the TPM Owner secret
for all systems owned by the company — individual users like you do not get this secret
(passphrase). The company’s policy on key management is as follows: keys can be
backed up to a company server, but can only be installed and used on a new system if
the system administrator approves the new system. Keys cannot be migrated or copied
directly from one system to another without the system administrator’s approval.

Describe clearly how this can be done with regular migratable keys. Give a full descrip-
tion of the process, starting with when the system is first bought by the company and



4 Handout 5: CSC 495/680 Assignment 3

ownership is taken of the TPM. Describe how a key management system set up by the
system administrator could work — who interacts at what times, who authorizes com-
mands, etc. In addition to describing the steps involved, justify as clearly as you can how
the security goals are enforced (e.g., why can’t a user copy keys to a new system on their
own?).

2. Consider the following scenario: You are a private individual with your own computer
— you are both the owner of the system and the main user, so you know both the owner
secret and all key authorizations (usage and migration authsecrets). You have bought a
piece of commercial software from a company, and they would like to use a key on your
system in parts of their software. However, to maintain the integrity of their software,
they would like the key to be restricted so it is only present or usable on systems that you
register with them — ideally this is just for a single system,since that is all you have
licensed the software for, but to enable system upgrades andsystem replacements the
company will authorize some additional systems in certain circumstances. So the goal is
a key that is migratable, but only under conditions that thisoutside party (who doesn’t
know the system secrets) authorizes.

Standard migratable keys cannot be used in this scenario: give a clear argument why not.

This scenariocan be implemented using CMKs — describe clearly how this can be done
with CMKs. Give a full description of the process, starting with when the system is
first bought and ownership is taken of the TPM. Describe how this CMK-based system
could work — who interacts at what times, who authorizes commands, etc. In addition
to describing the steps involved, justify as clearly as you can how the security goals are
enforced (e.g., why can’t a user copy keys to a new system on their own?).


