
CSC 495 – Problem Set 2 – Due Tuesday, January 24

Problem 2.R1: The Biggest N

Required Problem

Points: 50 points

Background

After analyzing the running time of an algorithm, you can get a formula for the running time that
is a function of n, the size of the input. This formula is typically the sum of terms that are either
constant, a power of n (like n or n2), a power of log2 n (like log2 n or (log2 n)2), or – more likely –
a product of these (like 1.8n log2 n). For example, the running time of mergesort might be the
following (measured in microseconds):

1.5n log2 n + 4n + 0.2 log2 n + 15

Note that in an asymptotic algorithm analysis, this would usually just be written as O(n log n)
since that reflects the most significant component of the running time. However, what if you want
to use the exact formula1, and answer the question “what is the largest value of n for which the
algorithm runs in less than a second (1,000,000 microseconds)?” Unfortunately, with the formula
above, it is impossible to directly solve the resulting equation — you need to find the answer with
an algorithm (which is what makes it interesting for us!). The answer to the specific problem
given here is n = 37, 337.

The Problem to Solve

The input will specify a running time formula and a limit on running time. Your program should
compute and print the largest input size for which the running time formula evaluate to less than
or equal to the running time limit. The running time is the sum of terms, where each term is
specified by three values: the constant multiplier, the power of n, and the power of log2 n. For
example, 3n2 is given by the three values 3 2 0. See the sample input for the input
representation of the formula given in “Background” above.

There are two guarantees in this problem: first, the running time function is monotonically
non-decreasing (that is, for all n the running time for input size n + 1 is always at least as large as
the running time for input size n). Second, you are guaranteed that the answer will fall in the
range 1, . . . , 1, 000, 000, 000. There will be at most 10 terms in the running time formula. Your
program must run in less than 10 seconds to be judged correct (a good solution can easily run in
less than a tenth of a second for any input).

1Even the more detailed formula is an over-simplification of what happens on real systems these days. Running

time is typically not a nice smooth formula like this, and jumps around — primarily due to the effect of caches. See,

for example, the actual running times in the graph on page 211 of Programming Pearls.



Hints and Techniques

All major programming languages provide a function for computing the natural logarithm, but
for this program you need the base 2 logarithm. The important mathematical property to use is
that if log(x) computes the logarithm of x in any base, then log(x)/log(2.0) is the base 2
logarithm of x. You’ll also need a powering function — remember that powers are floating point
values, so do not assume they’ll be integers (0.5 is a perfectly valid power).

Input and Output

The input starts with an integer n giving the number of terms in the running time formula. Next,
for each of the n terms there are the 3 numbers that describe the term. Finally, there is the
running time limit. The sample input and output given below describe the problem given in the
“Background” section.

Sample Input

4

1.5 1 1

4 1 0

0.2 0 1

15 0 0

1000000.0

Sample Output

37337



Problem 2.R2: Phony Words

Required Problem

Points: 50 points

Background

It can be interesting to see what words you can spell using a given phone number. For reference,
a standard telephone keypad is shown below (missing the bottom row, which isn’t important for
this problem).

7
PRQR

4
GHI

1

8
TUV

5
JKL

2
ABC

9
WXYZ

6
MNO

3
DEF

For example, if your phone number were 266-7453, you could spell “compile.” In this problem
we’re interested in only two ways of making words from phone numbers: either a single 7-letter
word, or the first digit of the number followed by a 6-letter word.

The Problem to Solve

Your program should read in a list of 6 and 7 letter words, followed by a list of phone numbers,
and print out a report for each number that either says that no words are possible, or a list of
possible words. The words don’t need to be given in any particular order. The number of both
lists can be large: up to 100,000 entries each.

In order to simplify this problem, you are guaranteed that none of the phone numbers contain
any 0 or 1 digits, so all digits map to a set of letters. Each number will be given as a 7-digit
value, with no dash or other characters. Each dictionary word will be 6 or 7 lower case characters.

Hints and Techniques

For this problem you can either implement some simple data structures yourself, or use data
structures that are provided as part of standard libraries. If you use an appropriate library data
structure then your coding time could be significantly reduced.

It is a good idea to create some large test cases so you can judge the speed of your solution —
you may need to write a test case generation program for this purpose. Note that if you try to
match all numbers with all words, you’re talking about 100,000 times 100,000 possible matches —
think about that!



Input and Output

The sample input and output shown below demonstrate the input and output format, but the
samples are much smaller than the actual test data. Test data will include a full dictionary of 6
and 7 letter words (over 68,000 words) and a large list of phone numbers (up to 100,000
numbers). The input starts with a number n, followed by n words, which are followed by another
number m and then m phone numbers.

Your output should follow the format below exactly. Each number should start with a line
that says “For number xxxxxxx:,” and if no matches are found you should print “No words

found” on that same line. If you do find numbers, print them below the “For...” line, indented
by exactly one space. For 6 letter words, print the first digit of the number first, followed by a
dash, and then the 6 letter word. When I say exactly like this, I mean it: Make sure your output
doesn’t have any extraneous spaces anywhere, like at the ends of lines.

Sample Input

9

unsafe

angolar

ninjas

bridger

ridger

sieger

abanet

killer

awesome

4

4867233

2646527

9559799

2743437

Sample Output

For number 4867233:

4-unsafe

For number 2646527:

angolar

2-ninjas

For number 9559799: No words found

For number 2743437:

bridger

2-ridger

2-sieger



Problem 2.C1: Danger, Will Robinson!

Challenge Problem

Ninja Points: This challenge problem is worth up to 20 base ninja points

Background

In this problem, we consider points on a line, where there are “danger points” and a “test point.”
The “safety” of a test point from a single danger point is simply the distance to the danger point,
and the overall safety measure for a set of danger points is just the sum of all the individual
distances. For example, consider the following illustration, where dots indicate danger points (at
6, 12, 25, 40, 41, and 55), and a test point (the “x”) at 35.

0 10 20 30 40 50 60 70

Point Distance

6 29

12 23

25 10

40 5

41 6

55 20

Adding up the distances in the righthand column, there is a total “safety measure” of 93 for the
test point at location 35.

The Problem to Solve

In this problem, you are given a range to consider, and a set of danger points in that range. You
are also given a lower bound on the allowable safety measure, and you need to compute the
number of possible integer-coordinate points that are too dangerous (i.e., have safety measure less
than the minimum allowable safety measure). The lower bound of the range will be at least 0 (so
all coordinates are non-negative), and the upper bound can be as large as one trillion. Danger
points are given in no particular order, and can be anywhere in this range. There will be at most
1000 danger points. Your program should run in less than 10 seconds.

For a particularly easy example, consider the range 0..40, two danger points at 10 and 20, and
allowable safety value of 14. The safety measure for location 8 is exactly 14, as is the measure at
location 22. All points between 9 and 21 (inclusive) have safety measure less than 14, so are too
dangerous — therefore the number of points that are too dangerous is 13.



Hints and Techniques

If you picture the numbers on a number line (like in the picture in “Background”) think about
what happens as the test point moves from left to right through the range — can you predict
whether the danger measure will increase, decrease, or remain the same based on where it is?

Input and Output

The first two numbers in the input are the endpoints of the range to consider, where the range is
inclusive (so in the sample input below, the range is 0, . . . , 80, including 0 and 80). This if
followed by a number n that gives the number of danger points, and then n numbers (the danger
point locations), and finally a single number that gives the lower bound on acceptable safety.

Your output should consist of a single number: the number of (integer coordinate) points that
are unsafe because they have a safety measure less than the safety lower bound.

Sample Input

0 80

6

25

41

12

55

6

40

127

Sample Output

38



Problem 2.C2: Scrambled Letters

Challenge Problem

Ninja Points: This challenge problem is worth up to 20 base ninja points

Background

Anagram finders can be fun: For example, did you know that “dormitory” and “dirty room” are
anagrams? Column 2 in Programming Pearls talks about finding anagrams when dealing with
single words, but what if you want to consider anagrams that use multiple words (like “dirty
room”)?

The Problem to Solve

Your program will be given a dictionary (a list of words, one word per line), followed by a list of
test phrases (one or more words per test phrase). Your program should find all anagrams of the
test phrase that you can make using one or more of the words from the provided dictionary.
Spaces and punctuation are not significant, and in order to make things a little easier you only
have to consider anagrams that use three or fewer words. There can be as many as 3,000 words in
the dictionary, and your program should be able to find all anagrams of any test phrase in under
10 seconds.

Hints and Techniques

The challenge here is making this run in a reasonable amount of time. There are too many three
word combinations to allow for trying all combinations, so you need to come up with a method
for significantly reducing your search space. Think about “signatures” as described in
Programming Pearls, although you can’t use the exact signature that Bentley gave for one word
anagrams (or at least, I don’t see how you could...).



Input and Output

Input consists of a number n, followed by n words for your dictionary, and that is followed by a
number m of test phrases followed by that many phrases. Dictionary words will be all lower case
letters, but test phrases can includes spaces or other non-letter characters (which should be
ignored for the purpose of anagrams), but all letters are guaranteed to be lower case.

Output should be formatted exactly as shown below, where the output for each test phrase
consists of a header line (which is the only line if no anagrams are found), followed by all possible
anagrams, with each one indented by a single space, and multiple words separated by a single
space.

Sample Input

13

alarms

come

dirty

dots

extra

here

one

plus

room

snooze

twelve

useless

word

6

alas! no more zs.

dormitory

the morse code

baffling problem

eleven plus two

help me

Sample Output

Anagrams for "alas! no more zs.":

snooze alarms

alarms snooze

Anagrams for "dormitory":

dirty room

room dirty

Anagrams for "the morse code":

here come dots

here dots come

come here dots

come dots here

dots here come

dots come here

Anagrams for "baffling problem": None found

Anagrams for "eleven plus two":

plus one twelve

plus twelve one

one plus twelve

one twelve plus

twelve plus one

twelve one plus

Anagrams for "help me": None found


