1

CSC 495 — Assignment 1 — Due Thursday, February 19

CSC 495 — Assignment 1 — Due Thursday, February 19

1. Find a story on a recent (within the past year) software vulnerability that led to a security breach. You

need to find a story that talks about how a specific software vulnerability was involved, so not just any
security story will do! Write a brief summary of the incident in your own words, describing what soft-
ware was involved, what the vulnerability was, and what the consequences were. Be as specific as you
can - in particular, if possible provide a CVE code (see http://cve.mitre.org for reference) for the spe-
cific software vulnerability, provide one or more CWE codes (see http://cwe.mitre.org/ for reference)
for the type of weakness(es) involved, and even include a CAPEC ID (see http://capec.mitre.org/) for
the type of attack if possible.

. As we discussed in class, “Calling Conventions” specify how arguments passed to a function in a

high-level language are actually provided to a function when it is compiled to assembly/machine
language. While we discussed this some in class, do some investigation on calling conventions for
Intel architecture in a 32-bit model (sometimes called the IA-32 or 1386 or x86 model) and a 64-
bit model (usually called the x86-64 model). For the 32-bit model, describe in your own words the
standard cdec] calling convention, and describe any differences between the Linux/gcc method and
the Microsoft method. Do the same for the 64-bit model (both the System V AMD64 ABI method
and the Microsoft method).

Finally, notice that stack-based calling conventions typically push arguments on the stack in a right-
to-left order. Work through the specifics of how such a calling convention works for the printf
function, and use this to explain why the right-to-left ordering is important. Be very specific, down
to the underlying assembly language — what would the difficulty be if arguments were pushed in a
left-to right order?

. In this problem you will explore “CWE-798: Use of Hard-coded Credentials.” This is number 7 on

the CWE/SANS Top 25 Most Dangerous Software Errors list, where it is described as follows (read
more at the provided links):

Hard-coding a secret password or cryptographic key into your program is bad manners,
even though it makes it extremely convenient - for skilled reverse engineers. While it
might shrink your testing and support budgets, it can reduce the security of your customers
to dust.

For this problem, you will practice being a “skilled reverse engineer” on three different executa-
bles provided for you (named findpassl, findpass?2, and findpass3), each using a different
method for hard-coding a password with increasing levels of protection. Each program is a setuid
executable, which runs as a different user (hwluserl, hwluser2, and hwluser3) and prompts
for a password. If you enter the right password, a shell is executed that runs with the effective user id


http://cve.mitre.org
http://cwe.mitre.org/
http://capec.mitre.org/
http://cwe.mitre.org/data/definitions/798.html
http://cwe.mitre.org/top25/index.html

CSC 495 — Assignment 1 — Due Thursday, February 19 2/4

(euid) set to that user, which will allow you to read a file that is protected so that it is readable only by
that user.

The first two programs are required work for this assignment, but the third is more challenging and is
extra credit!

What to do: You first need to locate the programs with the embedded passwords, so log in to your
account on cmpunix and go into the directory /csc495/hwl/findpass and look for a directory
named by your user name (each student has their own custom programs to reverse engineer, all with
different passwords!). In your own personal directory you will find the executable files and protected
data files that you are to work with. There are lots of standard tools you can use to gather information
and try to reverse engineer the programs, including gdb, strings, and ob jdump.

What to turn in: For each program, describe what you did to break the file and find the password.
You should describe this in enough detail so that someone could read your description and repeat the
steps to break the code. In addition to this description, you need to say what the password was for the
program and what the contents of the secret file are. (Hint: all passwords are 6 letter words, and all
secret file contents are 8 digit hexadecimal numbers.)

4. In this problem you will exploit a program with stack-based buffer overflow vulnerability (CWE-120:
Classic Buffer Overflow) that follows from the use of an unsafe function. While modern systems
have multiple protections against buffer overflow exploits, making them very difficult to perform, I
have purposefully turned off these protections to make this exploit easier. It is still quite challenging
however, so don’t think you can get this done at the last minute! The following things have been done
to make this easier to attack: it is compiled as a 32-bit executable with an executable stack, no stack
protection, and ASLR turned off.

Here is the basic information: The cmpunix system is running a super-simplified web server that
you can connect to from cmpunix on port 8888. This port is not open to the Internet, so you must
log in to cmpunix via ssh - to see the web server running, you can either use port forwarding over
ssh to connect from your own system (I'll demonstrate how to do this in class), or you can use the
command “nc localhost 8888 to connect from the shell prompt.

The source code that is running on the web server is available on cmpunix at /csc495/hwl/
buffoverflow/badhttpd.c, so your first task is to read through this code, understand how it
works, and find the buffer overflow vulnerability.

a. This code provides a handy “helpful to the hacker” function: when there is a segmentation fault,
caused by the program attempting to access an invalid memory location, it will report that fact
and give the illegal memory address that the program was trying to access. Try connecting to the
program using the ‘nc” command above, and type about 80 “A’ characters and see what happens.
Then try 40 A’s and 40 B’s. Once you understand how that works, figure out how to modify
parts of that input so that you can figure out where the return address is stored relative to the
start of the input buffer. In other words, is it 12 bytes from the beginning? 40 bytes from the
beginning? 80 bytes from the beginning? To turn in: Give the value you discovered (where the
function return address is relative to the start of the beginning of the input buffer), and describe
the process you used to determine this.



http://cwe.mitre.org/data/definitions/120.html

CSC 495 — Assignment 1 — Due Thursday, February 19 3/4

b.

For this part, you are going to go for a full exploit, not just crashing the server like you did in
part a. This is very tricky if you’ve never done it before, so you will have to be persistent! If
you can get a shell through the server, you can easily complete this exercise. This is a stack-
smashing attack, and there are many references on-line explaining how to do this, including the
“Smashing the Stack for Fun and Profit” article that is linked under the Readings section of the
class web site. You can use any resources that you can locate on-line, including code, but be
sure to cite your sources in your solution write-up. Also note that “any resources that you can
locate on-line” does not include solutions of other students!

What nefarious thing do you need to accomplish? The server can only read files from the system,
and has no capability for writing or saving files, so your goal is to exploit the system in a
way that allow you to write to a file in the account of the user that is running the web server
(user hwluser4). In particular, you should create a file named by your user name, with some
text contents. For example, if your user name were stsnape you could create a file named
stsnape.txt with the contents “The Half-Blood Prince was here.” For this part, you should
write up what you did to exploit the server to turn in with your homework, in addition to leaving
that file on the system. If you don’t get the full exploit accomplished, you should at least write
up a description of what you tried and describe how close you felt you were to completing the
exploit.

Extra incentive for not putting this off: 5 points extra credit will be given to the first student with
a successful exploit.

5. One way to try to avoid buffer overflow problems is to keep track of the size of every buffer you
allocate so that you can always check to make sure there’s enough room for an operation before
performing it. You could define a "sized buffer" type like this:

struct sizedbuff_s {

}i

unsigned int size;
char datal[O0];

This structure adds a size field, so needs slightly more memory, but can potentially result in safer
code. Here’s an example of how an allocation might work, where this code gets a buffer size from the
(untrusted!) user and then allocates and zeros out the new block of memory:

int 1i;
unsigned int user_size = get_size_from_user();
unsigned int struct_size = sizeof (unsigned int) + user_size;

struct sizedbuff_ s smybuffer =

for

(struct sizedbuff_s x)malloc(struct_size);

(1=0; i<user_size; i++)
mybuffer->datal[i] = 0;

Unfortunately, while this helps us avoid buffer overflows, it actually has a different vulnerability. What
precisely is this vulnerability, how can the user trigger it, and what are the consequences? When you



http://www.uncg.edu/cmp/faculty/srtate/495.s15/readings.html

CSC 495 — Assignment 1 — Due Thursday, February 19 4/4

answer how the vulnerability is triggered, be very specific: what specific value would be supplied on
a 32-bit machine, and what precisely would happen. (Hint: CWE 190)

6. Now that you have seen programs with security vulnerabilities in the previous two problems, you
are going to see how well you can do at writing a secure program. First create a directory named
securefiles under your home directory, and in that directory create at least 3 different text files.
Set permissions so that you can read those files, but no other non-root user on the system can. Also
create a file in your home directory named secretstuff.txt that no one else can read. Finally,
write a program that will be compiled to an executable named getfile in your home directory
that does the following: prompt the user for a password and a file name, and output the contents of
that file from the securefiles directory (if it exists). Here are the basic security requirements: It
should be impossible for an attacker who does not know the password to reverse engineer it from the
executable, and it should be impossible for an attacker to get the contents of any file outside of the
securefiles directory (so in particular it should be impossible to read secretstuff.txt from
your home directory, even for a user that knows the password). Your executable program getfile
should be a setuid executable that any user on the system can access and run. Have another student
test your program from their account to make sure they can access the files that they should be able
to! In addition to the stated high-level security goals, make sure you follow good coding practices:
don’t use unsafe functions, always check return values and handle exceptions properly, etc.




	CSC 495 — Assignment 1 — Due Thursday, February 19

