
Closed-source Debugging with GDB Cheat Sheet
by fristle via cheatography.com/5574/cs/1012/

GDB: Launching

Laun ​ching GDB

gdb progr ​amfile Start GDB ready to launch

and debug progr ​amfile

gdb --args

program arg1

arg2

Start GDB as above but

supplying command line

arguments to the target

process.

gdb -p pid Attach GDB to a running

target process.

Sele ​cting the Start of Debugg ​ing

gdb$ start Run the debuggee and

break at main() (if it exists).

gdb$ attach pid Attach GDB to a running

target process.

Adding a shim

gdb$ set exec-

w ​rapper env

'LD_PR ​ELO ​AD= ​
li ​bfo ​o.so'

The dynamic library file

libfo ​o.so will be loaded into

the address space of the

debuggee.

Logg ​ing

gdb$ set logging

file filename

The default logfile is gdb.txt

but you can use this to

change it.

gdb$ set logging

overwrite off

The default is on, which

overwrites the existing log

file.

gdb$ set logging

on

Turns on logging.

gdb$ echo

comme ​nt\n

With logging on, this will

add a comment to the

logfile.

GDB: Enviro ​nment

Cont ​rolling the enviro ​nment

gdb$

show env

Display the debuggee's current

enviro ​nment variables.

gdb$ set

env

varna ​me​
=v ​alue

Set an enviro ​nment variable.

gdb$

unset env

varname

Delete an enviro ​nment variable.

gdb$

show

args

Display the comman ​d-line

arguments of the debuggee

process.

gdb$ set

args arg1

arg2

Set the comman ​d-line arguments

to the debuggee process.

gdb$

shell

command

Run shell commands (useful

commands may include "ps -e",

etc.)

gdb$ pwd

| cd

These two commands can can

show or change the working

directory of GDB (useful for

logging, etc.).

GDB: Execution

Disp ​laying the Call Stack

gdb$ bt Show the list of stack frames

(BackT ​race).

gdb$ bt

full

Show the list of stack frames with

the local variables of each.

gdb$

info

frame

Show saved stack pointer, call

address, etc. for the selected stack

frame.

gdb$

frame

number

Select stack frame number number

(and crashed GDB 6.3.50 on OS X).

Cont ​rolling Execut ​ion

GDB: Execution (cont)

si

[count]

Step-into (one or count instru ​ction

forward).

ni

[count]

Step-over (one or count instru ​ction,

stepping over function calls).

return

[value]

Immedi ​ately return from the current

function, optionally setting the return

value.

finish Stop after finishing execution of the

current function.

continue Any time GDB is stopped, this will

continue normal execution.

GDB: Memory

Memory Images

gdb program

-c

memor ​ydu ​m
pfile

Debug program using a

memory dump file, image ​file.

gdb$

genera ​te- ​cor ​
e-file

(not in Mac OS X) Dump the

debuggee process memory to

disk.

Reading Disass ​embly and Memory

gdb$ set

disass ​emb ​ly
- ​flavor intel

Use the modern syntax for x86-

64 assembly. This is not the

default.

gdb$ set

disass ​emb ​le
- ​nex ​t-line on

Disass ​emble the next

instru ​ction every time GDB

stops. You want to turn this on.

gdb$ x/4i

0x00001234

Disass ​emble (eXamine) the first

4 instru ​ctions at address

0x0000 ​1234.

By fristle

cheatography.com/fristle/

Published 2nd May, 2013.

Last updated 1st June, 2014.

Page 1 of 3.

Sponsored by Readability-Score.com

Measure your website readability!

https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/fristle/
http://www.cheatography.com/fristle/cheat-sheets/closed-source-debugging-with-gdb
http://www.cheatography.com/fristle/
https://readability-score.com

Closed-source Debugging with GDB Cheat Sheet
by fristle via cheatography.com/5574/cs/1012/

GDB: Memory (cont)

gdb$ x/32i

$rip

Disass ​emble the first 32

instru ​ctions starting at the

current instru ​ction ($RIP on

x86-64).

gdb$ x/32i

$rip-16

Same command, but attempting

to disass ​emble both forward

and backward from the current

instru ​ction.

gdb$ info

address

symbo ​lname

Display the address in memory

of a given symbol, specified by

name.

gdb$ info

symbol

0x00001234

Displays the symbol name (if

any), executable segment, and

executable module associated

with the given address.

gdb$ x/1s

0x00001234

Display one null-t ​erm ​inated

string at address 0x0000 ​1234.

gdb$ x/8xb

0x00001234

Display 8 heXade ​cimal Bytes of

memory starting at address

0x0000 ​1234.

gdb$ info

registers

Display the value of the regular

CPU registers.

GDB: Memory (cont)

gdb$ info

all-

re ​gisters

Display the value of all CPU

registers including

floati ​ng- ​point and vector

registers. Does not include

special Machine Specific

Registers (MSRs).

gdb$ find

start ​_ad ​dres

s, dista ​nce,

value [,

anoth ​er_ ​valu

e, ...]

(not in Mac OS X) Search

memory for a value, given a

starting point and a search

distan ​ce/ ​offset.

gdb$ info

shared

Display info about all of the

executable modules of the

debuggee (name, load address,

file path, etc.).

gdb$ info

functions

Display all of the function

symbols available and their

associated addresses.

gdb$ info

variables

Display all of the variable

symbols available and their

associated addresses.

GDB: Breakp ​oints

Managing Breakp ​oints

gdb$ set

breakpoint

pending on

Bypasses the warning about

breakp ​oints in modules that

aren't loaded yet.

GDB: Breakp ​oints (cont)

gdb$ break

function

Sets a breakpoint at function if

("pe ​ndi ​ng" off) or when

("pe ​nding on") a symbol by that

name exists.

gdb$ break

*0x000 ​0123

4

Sets a breakpoint at address

0x0000 ​1234.

gdb$ break

0x000 ​01234

if

somes ​ymb ​o
l ​==​som ​eva

lue*

This is an example of the

condit ​ional breakpoint syntax.

gdb$ catch

syscall

name

Stop when the syscall name is

called. Omit name to stop on

every syscall. Instead of name,

you can also specify a syscall by

number.

gdb$ catch

load

(not in Mac OS X) Stop when the

debuggee loads any dynamic

library. Also: catch unload.

gdb$ info

break

List all breakp ​oints and

watchp ​oints.

gdb$ clear

[brea ​kpo ​inti

d]

Deletes one or all existing

breakp ​oints. This is a typically

ambiguous command

exempl ​ifying the need for this

cheat sheet.

gdb$

disable

[brea ​kpo ​inti

d]

Disables one or all breakp ​oints.

Managing Watchp ​oints (Data Breakp ​oin ​ts)

By fristle

cheatography.com/fristle/

Published 2nd May, 2013.

Last updated 1st June, 2014.

Page 2 of 3.

Sponsored by Readability-Score.com

Measure your website readability!

https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/fristle/
http://www.cheatography.com/fristle/cheat-sheets/closed-source-debugging-with-gdb
http://www.cheatography.com/fristle/
https://readability-score.com

Closed-source Debugging with GDB Cheat Sheet
by fristle via cheatography.com/5574/cs/1012/

GDB: Breakp ​oints (cont)

watch

*0x123 ​4567

8 [mask

0xffff ​ff00]

Stop on any change to the 24

most signif ​icant bits of a 32-bit

value at address 0x1234 ​5678.

awatch

*0x123 ​4567

8

Like watch, but also stops on

any write or read accesses to the

given address.

rwatch

*0x123 ​4567

8

Like watch, but only stops on

read accesses.

GDB: Concur ​rency

Mult ​ith ​readed Debugg ​ing

gdb$

info

threads

List the threads of the target

process.

gdb$

thread

threadID

Attach GDB to the thread threa ​dID.

gdb$ set

non-stop

on

Only the debugged thread is halted

in GDB, the rest continue to run

non-stop (unless they are blocking

on the thread being debugged).

gdb$ set

schedu ​le
r ​-
lo ​cking

on

Only the debugged thread will run

when the debuggee is resumed.

gdb$ set

schedu ​le
r ​-
lo ​cking

step

Only the debugged thread will step

when being step-d ​ebu ​gged.

gdb$

show

schedu ​le
r ​-
lo ​cking

Display the current setting value.

Mult ​ipr ​ocess Debugg ​ing

GDB: Concur ​rency (cont)

gdb$ set

follow ​-
fo ​rk-mode

child

GDB will detach at a fork() and

attach to the new process.

gdb$ set

follow ​-
fo ​rk-mode

parent

(Default) GDB will not detach at a

fork().

gdb$

show

follow ​-
fo ​rk-mode

Display the current setting value.

gdb$ set

follow ​-
ex ​ec-

mode new

GDB will detach at an exec() and

attach to the new process.

gdb$ set

follow ​-
ex ​ec-

mode

same

(Default) GDB will not detach at

an exec().

gdb$

show

follow ​-
ex ​ec-

mode

Display the current setting value.

gdb$ set

detach ​-
on ​-fork off

GDB will not detach at a fork()

and will also attach to the child

process (both will be debugged).

gdb$

show

detach ​-
on ​-fork

Display the current setting value.

gdb$ info

inferiors

List all processes under GDB's

control. (On Mac OS X: info files)

GDB: Advanced

Anti ​-Anti Debugg ​ing

gdb$

handle

signal

[keyw ​or

d ​s...]

(Untested) might bypass except ​ion ​-
based anti-d ​ebu ​gging

gdb$

catch

syscall

ptrace

(Untested) Use this breakpoint to

return 0 (set $rax = 0; continue),

should bypass ptrace() checking by

the debuggee.

By fristle

cheatography.com/fristle/

Published 2nd May, 2013.

Last updated 1st June, 2014.

Page 3 of 3.

Sponsored by Readability-Score.com

Measure your website readability!

https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/fristle/
http://www.cheatography.com/fristle/cheat-sheets/closed-source-debugging-with-gdb
http://www.cheatography.com/fristle/
https://readability-score.com

	Closed-source Debugging with GDB Cheat Sheet - Page 1
	GDB: Launching
	GDB: Enviro­nment
	GDB: Memory
	GDB: Execution

	Closed-source Debugging with GDB Cheat Sheet - Page 2
	GDB: Breakp­oints

	Closed-source Debugging with GDB Cheat Sheet - Page 3
	GDB: Concur­rency
	GDB: Advanced

