Cheatography

GDB: Launching

Launching GDB

gdb programfile Start GDB ready to launch
and debug programfile

gdb --args Start GDB as above but

program arg1 supplying command line

arg2 arguments to the target
process.

gdb -p pid Attach GDB to a running

target process.

Selecting the Start of Debugging

gadb$ start Run the debuggee and
break at main() (if it exists).

gadb$ attach pid Attach GDB to a running
target process.

Adding a shim

gadb$ set exec- The dynamic library file

wrapper env libfoo.so will be loaded into

'LD_PRELOAD= the address space of the

libfoo.so' debuggee.

Logging

gadb$ set logging
file filename

The default logfile is gdb.txt
but you can use this to
change it.

gadb$ set logging The default is on, which

overwrite off overwrites the existing log

file.

gadb$ set logging Turns on logging.

on
gdb$ echo With logging on, this will
comment\n add a comment to the
logfile.
By fristle

cheatography.com/fristle/

GDB: Environment

Controlling the environment

gab$ Display the debuggee's current
show env environment variables.

gdb$ set Set an environment variable.
env

varname

=value

gab$ Delete an environment variable.
unset env

varname

gadb$ Display the command-line
show arguments of the debuggee
args process.

gdb$ set Set the command-line arguments
args arg? to the debuggee process.

arg2

gdb$ Run shell commands (useful
shell commands may include "ps -e",
command etc.)

gdb$pwd These two commands can can

| cd show or change the working

directory of GDB (useful for
logging, etc.).

GDB: Execution

Displaying the Call Stack

gdb$ bt Show the list of stack frames
(BackTrace).

gdb$ bt Show the list of stack frames with

full the local variables of each.

gab$ Show saved stack pointer, call

info address, etc. for the selected stack

frame frame.

gab$ Select stack frame number number

frame (and crashed GDB 6.3.50 on OS X).

number

Controlling Execution

Published 2nd May, 2013.
Last updated 1st June, 2014.
Page 1 of 3.

Closed-source Debugging with GDB Cheat Sheet
by fristle via cheatography.com/5574/cs/1012/

GDB: Execution (cont)

si Step-into (one or count instruction

[count] forward).

ni Step-over (one or count instruction,

[count] stepping over function calls).

return Immediately return from the current

[value] function, optionally setting the return
value.

finish Stop after finishing execution of the
current function.

continue Any time GDB is stopped, this will

continue normal execution.

GDB: Memory

Memory Images

gdb program Debug program using a

-C memory dump file, imagefile.
memorydum

pfile

gadb$ (not in Mac OS X) Dump the

generate-cor debuggee process memory to

e-file disk.

Reading Disassembly and Memory

gab$ set Use the modern syntax for x86-
disassembly 64 assembly. This is not the
-flavor intel default.

gadb$ set Disassemble the next
disassemble instruction every time GDB
-next-line on stops. You want to turn this on.
gadb$ x/4i Disassemble (eXamine) the first
0x00001234 4 instructions at address

0x00001234.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/fristle/
http://www.cheatography.com/fristle/cheat-sheets/closed-source-debugging-with-gdb
http://www.cheatography.com/fristle/
https://readability-score.com

Cheatography

GDB: Memory (cont)

gdb$ x/32i
$rip

gdb$ x/32i
$rip-16

gadb$ info
address
symbolname
gadb$ info
symbol
0x00001234

gdb$ x/1s
0x00001234

gdb$ x/8xb
0x00001234

gadb$ info
registers

Disassemble the first 32
instructions starting at the
current instruction ($RIP on
x86-64).

Same command, but attempting
to disassemble both forward
and backward from the current
instruction.

Display the address in memory
of a given symbol, specified by
name.

Displays the symbol name (if
any), executable segment, and
executable module associated
with the given address.

Display one null-terminated
string at address 0x00001234.

Display 8 heXadecimal Bytes of
memory starting at address
0x00001234.

Display the value of the regular
CPU registers.

By fristle
cheatography.com/fristle/

GDB: Memory (cont)

gadb$ info Display the value of all CPU

all- registers including

registers floating-point and vector
registers. Does not include
special Machine Specific
Registers (MSRs).

gadb$ find (not in Mac OS X) Search

start_addres
s, distance,
value [,
another_valu

memory for a value, given a
starting point and a search
distance/offset.

e ...]

gadb$ info Display info about all of the

shared executable modules of the
debuggee (name, load address,
file path, etc.).

gadb$ info Display all of the function

functions symbols available and their
associated addresses.

gdb$ info Display all of the variable

variables symbols available and their

associated addresses.

GDB: Breakpoints

Managing Breakpoints

gadb$ set Bypasses the warning about
breakpoint breakpoints in modules that
pending on aren't loaded yet.

Published 2nd May, 2013.
Last updated 1st June, 2014.
Page 2 of 3.

Closed-source Debugging with GDB Cheat Sheet
by fristle via cheatography.com/5574/cs/1012/

GDB: Breakpoints (cont)

gdb$ break Sets a breakpoint at function if

function ("pending" off) or when
("pending on") a symbol by that
name exists.

gdb$ break Sets a breakpoint at address

*0x0000123 0x00001234.

4

gdb$ break This is an example of the

0x00001234 conditional breakpoint syntax.
if

somesymbo

|==someva

lue*

gdb$ catch Stop when the syscall name is

syscall called. Omit name to stop on

name every syscall. Instead of name,
you can also specify a syscall by
number.

gdb$ catch (not in Mac OS X) Stop when the

load debuggee loads any dynamic
library. Also: catch unload.

gdb$ info List all breakpoints and

break watchpoints.

gdb$ clear Deletes one or all existing

[breakpointi breakpoints. This is a typically

d ambiguous command
exemplifying the need for this
cheat sheet.

gdb$ Disables one or all breakpoints.

disable

[breakpointi

d

Managing Watchpoints (Data Breakpoints)

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/fristle/
http://www.cheatography.com/fristle/cheat-sheets/closed-source-debugging-with-gdb
http://www.cheatography.com/fristle/
https://readability-score.com

Closed-source Debugging with GDB Cheat Sheet
by fristle via cheatography.com/5574/cs/1012/

GDB: Breakpoints (cont) GDB: Concurrency (cont)

Cheatography

watch Stop on any change to the 24 gab$ set GDB will detach at a fork() and
*0x1234567 most significant bits of a 32-bit follow- attach to the new process.
8 [mask value at address 0x12345678. fork-mode
0xffffff00] child
awatch Like watch, but also stops on gadb$ set (Default) GDB will not detach at a
*0x1234567 any write or read accesses to the follow- fork().
8 given address. fork-mode
rwatch Like watch, but only stops on parent
*0x1234567 read accesses. gdb$ Display the current setting value.
8 show
follow-
GDB: Concurrency fork-mode
Multithreaded Debugging gadb$ set GDB will detach at an exec() and
follow- attach to the new process.
gab$ List the threads of the target exec-
info process. mode new
threads

gadb$ set (Default) GDB will not detach at
gadb$ Attach GDB to the thread threadID.

follow- an exec().

thread TEE
threadID e
gdb$ set Only the debugged thread is halted same
non-stop in GDB, the rest continue to run gdb$ Display the current setting value.
on non-stop (unless they are blocking show

on the thread being debugged). follow-
gdb$ set Only the debugged thread will run exec-
schedule when the debuggee is resumed. mode
- gdb$set GDB will not detach at a fork()
e, detach- and will also attach to the child
on

on-fork off process (both will be debugged).
gdb$ set Only the debugged thread will step gab$
schedule when being step-debugged.

Display the current setting value.

show
" detach-
locking on-fork
step
gadb$ info List all processes under GDB's
gab$ Display the current setting value. inferiors control. (On Mac OS X: info files)
show
schedule
] GDB: Advanced
locking Anti-Anti Debugging
Multiprocess Debugging gdb$ (Untested) might bypass exception-
handle based anti-debugging
signal
[keywor
as...]

gadb$ (Untested) Use this breakpoint to
catch return 0 (set $rax = 0; continue),
syscall should bypass ptrace() checking by
ptrace the debuggee.

By fristle Published 2nd May, 2013. Sponsored by Readability-Score.com
cheatography.com/fristle/ Last updated 1st June, 2014. Measure your website readability!
Page 3 of 3. https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/fristle/
http://www.cheatography.com/fristle/cheat-sheets/closed-source-debugging-with-gdb
http://www.cheatography.com/fristle/
https://readability-score.com

	Closed-source Debugging with GDB Cheat Sheet - Page 1
	GDB: Launching
	GDB: Enviro­nment
	GDB: Memory
	GDB: Execution

	Closed-source Debugging with GDB Cheat Sheet - Page 2
	GDB: Breakp­oints

	Closed-source Debugging with GDB Cheat Sheet - Page 3
	GDB: Concur­rency
	GDB: Advanced

