

Packet size determined by MTU (Maximum Transmission Unit)

- · Each packet sent independently
 - Different pieces can routed separately
 - Not dependent on a fixed "switched" connection, so can "re-route" easily to avoid trouble spots
- Postcard analogy

Internet/Networking Overview

Slide 3

Some Internet History

- ARPA (Advanced Research Projects Agency) experiment to test ideas of "packet switched networks"
- 1969: First node goes on-line (UCLA)
- 1970's: Maturing and apps (e-mail in 1972)
- 1980's: Widespread in academic, military, and research communities
 - 1985: NSFNET
- 1990's: The web and privatization

Internet/Networking Overview

Slide 4

Some Web History

- 1990: Tim Berners-Lee at CERN defined:
 - HTTP (transfer)
 - HTML (presentation)
 - URLs (reference)
- 1993: Mosaic released by NCSA
- December 1994: Netscape appears
 - Improvements in efficiency/caching
 - Integrated encryption/SSL to enable secure connections
 - Portable with attractive / easy-to-use user interface

Internet/Networking Overview

Network Protocols

- A <u>network protocol</u> provides syntactic and semantic rules for communication.
 - Often defined in terms of state machines
 - Standards allow service-based interoperability
 - Internet RFCs (TCP/IP, DNS, ...)
 - IEEE standards (Ethernet, etc.)
- · Protocols can be in hardware or software
 - Ethernet access protocol often in hardware
 - HTTP and other high-level usually in software

Internet/Networking Overview

Slide 6

ARP: Finding the right host on a subnet

- Problem:
 - Ethernet works on MAC addresses (doesn't understand IP)
 - IP works on IP addresses (doesn't understand Ethernet)
 - How do we get a packet to the right host on a LAN/subnet?

Answer. The Address Resolution Protocol (ARP)

- Example: Host 10.1.1.42 wants to send to 10.1.1.92
 - · But! Only knows IP address, not MAC address
 - So: Broadcasts an ARP message on Ethernet saying "Who has 10.1.1.92?"
 - 10.1.1.92 responds with "I have 10.1.1.92. My MAC is 00:02:2d:9a:27:72"
 - Now 10.1.1.42 sends over Ethernet to this MAC

Internet/Networking Overview

Slide 13

When ARP goes bad: ARP Spoofing

- Performance: Hosts keep an "ARP Table" of known IP address <-> MAC mappings
 - Doesn't have to ask if MAC address known
 - Updates table with each "I have a.b.c.d" message
 - Expires mappings regularly (in case IP moves)

[root@host -]# arp -n←					1
Address	HWtype	HWaddress	Flags Mask	I face	
129. 120. 61. 49	ether	00: D0: B7: BA: A6: D2	C	eth0	
129. 120. 61. 250	ether	00: 08: 20: 30: 37: FC	C	eth0	
129. 120. 61. 41	ether	00: 02: B3: B5: 20: 23	C	eth0	
120 120 61 222	othor	00: D0: D7: 02: 14: E4	C	o+b0	

- ARP spoofing: To sniff on a switched Ethernet
 - Attacker (on same LAN) sends out "I have a.b.c.d" messages for target machine (or all machines!)
 - Packets then sent to the attacker rather than the destination (which could be the gateway router)
 - Attacker can then forward packets so no disruption just monitoring

0. 0. 0. 0

GREENSBORO

Internet/Networking Overview

Slide 14

ARP Spoofing Countermeasures

- · Static ARP tables
 - Sensitive subnets should use static ARP tables
 - Mappings don't expire
 - Mappings are hard-coded to be genuine by the administrator
 - Not perfect: MAC address spoofing still possible!
- · Possible future directions:
 - A better solution is still an unresolved research issue
 - Some suggest authenticated ARP
 - Uses digital signatures (PK Crypto), so slow and ARP needs to be very low overhead!

Internet/Networking Overview

Slide 15

Subnet-to-subnet Communication Gateways and Routers · Router "lives on" multiple subnets - Local address on each 129.12.60.0/23 Can be more than 2 NICs / subnets Routing tables say what goes where - See with "/sbin/route" in Linux/Unix - See with "route print" in Windows 129.12.61.1 Router Sample simplified host routing table: 72.1.19.53 Destination 129. 12. 60. 0 0. 0. 0. 0 Gateway 0. 0. 0. 0 129. 12. 61. 1 0.0.0.0 Sample simplified router routing table: 72.1.19.0/24 Desti nati on subnet 129. 120. 60. 0 72. 1. 19. 0 255. 255. 254. 0 255. 255. 255. 0

0.0.0.0

Internet/Networking Overview

Network Layer Topology

- · How are subnets connected together?
 - Earlier discussion was physical link topology now logical links
- · Physical layer considerations:
 - Point-to-point: Direct connections of two endpoints
 - Protocols: PPP (point-to-point protocol typically over serial/phone lines) and PPoE (point-to-point over Ethernet used by a lot of DSL)
 - Broadcast: Sent out to "whoever gets it" (e.g., wireless)
 - Similar issue on ethernet: switches vs. hubs
- Interconnection issues:
 - Ownership: Who owns pieces of the network?
 - Control: Sub-network administration
 - Boundary: Separation of separate domains of control

Internet/Networking Overview

Slide 17

Internet/Networking Overview

GREENSBORO

Internet/Networking Overview

Basic Network Security Tools

Intrusion Detection Systems (IDS)

- · Categorization by location:
 - Host-based Intrusion Detection Systems (HIDS)
 - · Many just watch system/audit logs for suspicious activity
 - · Some with more sophisticated monitoring (pH: monitors
 - Network-based Intrusion Detection Systems (NIDS)
 - Watches all traffic at a certain point (can use a tap)
 - · If just external access point, can miss insider attacks!
 - · On switched networks: Use a "spanning port"
 - · Difficulties with encrypted traffic

Basic Network Security Tools Intrusion Detection Systems (IDS)

- · Categorization by type:
 - Signature-based

GREENSBORO

- · Monitors traffic for known suspicious patterns
- · Advantages: Fast, few false positives
- Drawbacks: Can't detect novel attacks, must prioritize warnings
- · Keeping signatures up-to-date leads to subscription services
- Anomaly-based
 - · Trys to learn "typical activity" and flag anomalies
 - Anything unusual (including novel attacks) can be caught
 - Drawbacks: Slow and atypical behavior doesn't necessarily mean bad behavior (too many false positives)
- Snort and most commercial IDSs are signature-based (sometimes with simple anomaly-based extensions)

Internet/Networking Overview