
The University of North Carolina at Greensboro Handout 6
CSC 580: Cryptography and Security in Computing October 5, 2007
Prof. Stephen R. Tate

AES Challenge – Extra Credit
Due: Friday, October 12

This handout describes the extra-credit challenge assignment that involves implementing
AES. What you need to do to complete this assignment is to implement AES encryption with a
128-bit key. The following amounts of extra credit are available, as points added to your total
cumulative assignment points:

A working implementation: 25 points
The most elegant implementation: 15 points
The fastest implementation: 20 points

Email me your solution before midnight on October 12 in orderto be considered. I will first
test all submissions by running test vectors through in order to see that they give the correct
answers. Then I will look at the code of the working submissions to see which I think is the
most cleanly or elegantly implemented (and comments count too!). Finally, I’ll run a “speed
test” of all working implementations, where I encrypt around 100,000 blocks of plaintext with
each implementation. The implementation that runs fastestgets those extra credit points.

In order to be able to test these, it is important that everyone use the same interface. To
implement this, write a class calledAESCipher that has two methods (at least – if you want
to add more, feel free, as long as they make sense). The first method will set the key for the
block cipher (call thissetKey ), and the second will encrypt a block of plaintext (call this
encrypt ). You can callencrypt multiple times without having to callsetKey again, so
if you can do any pre-computations with the key insetKey then the subsequent encryptions
will run faster (hint, hint...).

There is sample code on the following page showing how these methods should be defined.
The actual methods will be replaced, of course, but the method signatures (parameters, etc.)
in your code should beexactly as shown in the example. You can download this code from
the class web page, so that you can replace the method bodies while leaving the interfaces the
same.

The class web page will have a few “test vectors” that you can use to see if your code works
properly. Make sure you use these to make sure you did things right!



2 Handout 6: AES Challenge – Extra Credit – Due: Friday, October 12

class AESCipher {
public:

static const int KEYLEN = 16;
static const int BLOCKLEN = 16;

private:
unsigned char keyCopy[KEYLEN];

public:
void setKey(unsigned char key[]) {

for (int i=0; i<KEYLEN; i++) {
keyCopy[i] = key[i];

}
}

void encrypt(unsigned char inBytes[], unsigned char outBy tes[]) {
for (int i=0; i<BLOCKLEN; i++)

outBytes[i] = inBytes[i] ˆ keyCopy[i];
}

};

int main()
{

unsigned char key[AESCipher::KEYLEN] =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};

unsigned char plain[AESCipher::BLOCKLEN] =
{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17};

unsigned char cipher[AESCipher::BLOCKLEN];

AESCipher aesObject;

aesObject.setKey(key);
aesObject.encrypt(plain, cipher);

for (int i=0; i<AESCipher::BLOCKLEN; i++)
printf("%02x ", (unsigned int)cipher[i]);

putchar(’\n’);

return 0;
}


