The University of North Carolina at Greensboro Handout 4
CSC 580: Cryptography and Security in Computing February 21, 2013
Prof. Stephen R. Tate

Security Models and Reasoning about Security

The primary goal of this class is to bring students to a level where they stadelrenough about
cryptography to use it intelligently, while gaining some insight into how cry@phic operations work.
However, it is not a cryptography class in the sense of learning thecgc@ncryptography, and the
Stallings book is similarly focused and does not discuss the science dbgrgphy. The purpose of
this handout is to give you some insight into how cryptographers thinktademurity. Even if you
never study more cryptography, the concepts that have been deyatopeyptography are extremely
powerful for the clarity they bring to thinking and reasoning about sgcur

Some details are glossed over in this handout, and there are subtle isgua® tbaly apparent
with more study. If you want to learn more about the formal study of cryfoigy, | would recom-
mend the boolntroduction to Modern Cryptography by Katz and Lindell, or the lecture notes by
Bellare and Rogaway (also entitléatroduction to Modern Cryptography!) that are freely available at
http://cseweb.ucsd.edu/ "mihir/cse207/classhotes.htm l.

1 TheBasics

While you probably have some reasonable intuition about what it means éaK'ban encryption
scheme or some other cryptographic system, turning this intuition into ideas witlylemathematical
rigor to support logical reasoning about security brings up many subtiessand is quite challenging.
One of the great success of cryptographic research in the pastfdes has been the development
of formal models of security that simultaneously match our intuition of securdypaovide the logical
foundation for rigorous reasoning about security. Any model fousgcmust consider how the adver-
sary is defined, and in this section we discuss three very basic ques@bmsust be answered, related
to the adversary’s access, power, and ultimate goal.

What kind of access does the adversary have to the cryptographéered/Shis is often referred to as
the style of attack, and is discussed somewhat in Section 2.1 of the Stallingsalexthile a real-
world attack might only have access to captured ciphertext, we primarilyd=mnsodels in which the
adversary is given substantially more power. If we can devise systetraréhsecure against these pow-
erful attackers, they are certainly secure in other situations in which thersaty is more limited. The
two most common adversary models elnesen plaintext attacks andchosen ciphertext attacks. In these
models, the adversary is given access to either an encryption devickewvica that can decrypt as well
as encrypt — picture this device as a tamper-proof piece of hardwargahaan feed values (plaintext
or ciphertext) into, but the adversary has neither access nor comgothe key that is used. Of course,
this is all just an issue of mathematical modeling, not real physical devicgsisaing terminology from
computational complexity theory we refer to these devices as “oracles.”

We also borrow notation from computational complexity theory: we denote xbeuéon of an
algorithm A on inputsz andy can be writtenA(z,y), much like in a programming language with

2 Handout 4: Security Models and Reasoning about Security

function names and parameters. A regular algorithm, Hkecan do all the standard computational
tasks like arithmetic, logic, looping, control, etc., but what about givingccess to an oracle such as
an encryption oracle? This i®t part of a normal computational model, since the encryption oracle
computes a function that cannot compute on its own (remembdrdoes not know the key used by
the encryption oracle). One way to view this is that the oracle defines afAflication Programing
Interface), and4 can query the oracle through this API even if it has no ability to compute theteora
function itself. For example, we could denote an encryption oracl€,bgnd define the API to be
such that€ takes a plaintext valug and returns a ciphertext value(soc = £(p)). To denote that
algorithm A can use encryption oraclewhen processing inputsandy, we provide the oracle name(s)
as superscript(s) to the algorithm name, so in this case we wfite,y) — this is exactly what we
mean by thechosen-plaintext model, where attack algorithm has access to an encryption oracle that
it can use to encrypt plaintexts of its choosing. If an algorithm has at¢oessltiple oracles then we
can give a comma separated list in the superscript, so an algorithm thatdess & both encryption
and decryption oracles would be written4$? (z, y) — with access to both encryption and decryption
oracles, this is thehosen-ciphertext model.

Example la. Lets say that a person is using a block cipher (like AES, but with variable
block and key sizes) as a deterministic small plaintext cipher: just putting irblook

of plaintext and running the block directly. The adversary knows thates is sending a
simple “Yes” or “No” answer, and has access to an encryption oracke.cai define an
attack algorithm as follows — notice the superscript on the algorithm nameatimdijdhat

the algorithm has access to the encryption oracle, and the dsmsifle the algorithm as a
simple function call.

A¢(e):
if £("Yes”) = ¢ then
return "Yes”
ese
return "No”

While the purpose of this example is to show how the oracle concept and nosago
used, it's also a clear example of how a deterministic algorithm with a small sessiije
plaintexts can never be secure in the chosen-plaintext model.

What power does the adversary havei8 common in computer science to equate “efficient algorithms”
with “polynomial time algorithms” — so algorithms that run @(n) time, or O(n?) time, orO(n?)
time are considered efficient, while algorithms that ru®if2") time, ©(n") time, ©(n!) time, or even
O(n'°e™) are not efficient. In fact, since there are many practical algorithms tleatamglomization
(e.g., randomized algorithms for testing primality), we will refer to an algorithfietiigient” even if it
uses randomization, as long as the expected running time of the algorithmmepuoé). The technical
term for such an algorithm isgrobabilistic polynomial time algorithm.

When we say that there is an efficient attack on a cryptographic systemmeae that there is an
efficient algorithm for the adversary that “breaks” the system in somses@vhich we’ll consider later).
Is it realistic to say that an adversary is an “algorithm”? Can a person dgengnts and intuition in

Handout 4: Security Models and Reasoning about Security 3

breaking a system that can’'t be codified in an algorithm? These are miwsqgihical questiors
and the fact is that modern cryptosystems are complex enough wheresattmak to be automated in
algorithms, so we stick with this idea for our model of security. The one bigtarethat arises from
this description is “polynomial in what?” — in other words, whatiisvhen we say an adversary’s
algorithm has running timé&(n?)? The solution to this in cryptography is that we define algorithms
that are parameterized by what we call the “security parameter,” aneémeealin this handout with.

In any running time, if we say the adversary runs in tig?) we mean that it runs in time(\?),
where is this security parameter. The security parameter might be, for exampleyriteen of bits in

a cryptographic key, so that the higher the security parameter the lorgeeythand hence (hopefully!)
the harder it is to break the system. Our goal then is to create cryptogralgbiithms that can be
computed efficiently (in time polynomial in), but can’'t be broken efficiently (i.e., no probabilistic
polynomial algorithm can break the security).

What about calls to the oracle? Since these aren’'t standard computagtionatiures, how long
should we say an oracle call takes? In some situations this can be a veryantpprestion, and properly
accounting for the time an adversary uses in oracle calls is vital. Howeviisioverview, we only
care to distinguish between “polynomial time” and “non-polynomial time”, andegipe accounting
isn’t necessary — in fact, we’ll basically ignore the computational time ofranle call, and just treat
it as the amount of time required to write out the parameters to the oracle aratittheeresult. If you
study more cryptography, with a little practice you should get a good feeltien this simplification is
appropriate and when it isn’t, but just know that it is appropriate for teeusgsion in this handout.

Example 1b. We return to Example 1a, and consider the functiBric) a little further. In
particular, this algorithm is precisely the algorithm that would define an adwgpperating

in a given ciphertext in the chosen-plaintext adversarial model. In tgaiag of the
example, we said we were dealing with a block cipher that could take on aedhitfielock
and key sizes. Given the discussion of the current question, hopgfulycan see why

it was worded this way. Algorithms are analyzed by the time required as thednpus
— if the input size if fixed, or has some upper-bound (e.g., AES with keytsctranot be
larger than 256 bits), theavery algorithm you could possibly run on this, including a brute
force attack, is “constant time” @(1). Therefore, to make running times meaningful, we
need to consider a generalized block cipher in which the key/block sizaéasntiaed by
the security parameter, so we can have a key size of 128 bits, 1024 eigrod,000,000
or more bits.

So what is the time complexity of algorithat (¢)? The algorithm is about as simple as
it could possibly be, with the only time being for preparing the inpuf &nd checking the
result. The plaintext must be padded out to a full block, the size of whiceterohined by
the security parameter, so in the end we see that we would call i atime adversary
algorithm.

!Peopledo think about these questions. For example, in his famous GbekEmperor's New Mind, physicist Roger
Penrose argues that human consciousness and intelligence, with iteflegp&ion, comes from the kind of non-determinism
that we see in quantum physics rather than traditional algorithms. But tdk#ip the next step, people are currently working
on building computers that operate on the same quantum physics principleing “quantum algorithms,” and so at some
point we might consider an “efficient adversary” as one that careberibed by a polynomial time quantum algorithm!

4 Handout 4: Security Models and Reasoning about Security

What does it mean for the adversary to “break securitiktirst this seems like an obvious question:
If we have a secret to protect using encryption, then the adverseakdsecurity if it learns our secret.
This is, in fact, what the adversary does to break the security in Examplél@aever, if we want
to establish that a cryptosystem has security in all uses and scenarioshithes not sufficient. For
example, what if we could determine whether the plaintext had some mathematipalty — a bit
string entering an encryption algorithm can be viewed as a nhumber, soifwhatcould determine
whether that number were even or odd? You might be tempted to say thatsonioad, but thian
cause a problem: if the message were a single word, either “attack” ogdtétthen it turns out that
“attack” is an odd number and “retreat” is an even number, so you just@asy your battle plans! As
a general rule, any time you settle for “just a little insecurity” it could and abbpwill come back and
bite you later!

In general then, it seems like our goal should be that the adversamyaoano information what-
soever about the plaintext.2 Of course, “no information whatsoever” is difficult to define in a rigorous
and useful way, but it can be done, and the result is a notion of sethityve callsemantic security
(“semantics” is synonymous with “meaning”, so what we're really sayingas titie adversary gets no
meaning from the ciphertext). The notion of semantic security (and the préefmition, which we are
avoiding in this handout!) is due to Goldwasser and Micalithe early 1980's, and was one of the
breakthrough ideas in defining security for cryptosystems. This woekthv@beginning of a long line
of successful research rigorously defining security for cryptugalgorithms. Fortunately for us, the
difficulty with defining this precisely can be avoided, as we’ll see later wittmpler analysis method
that nonetheless gives us this intuitively strong notion of security.

Gaining no information at all seems like about as strong a goal as we carférppnd it is in fact
this goal that is met by the “perfect security” one-time pad system. Howeaélier in this class you
did an exercise in which you saw that even a one-time pad has a wealinegtacker, even if she can't
get any information about the plaintext, can modify the ciphertext in a wayttmatkes meaningful and
predictable changes in the plaintext that the receiver would obtain byngitime modified ciphertext
through the decryption algorithm. As a solution to this problem, Dolev, Dwarl, iMaof defined a
security notion that they named “non-malleable security” — essentially, thertgxtt can’t be changed
(i.e., isn't malleable) in a way that could produce a meaningful change tetoeered plaintext. Like
semantic security, this is a security notion that intuitively “feels right,” but dlgosemantic security,
rigorously defining this notion is quite tricky (what does a “meaning changaly mean?). Again, we
are saved by other ideas that we will describe later that allow us to achisvetilitively appealing
notion of security while avoiding the messy definition of something being “meéanihg

So we have seen two important definitions of security that make sense: teesemurity and non-
malleable security. It turns out that non-malleable security implies semantidtgesa it is a strictly
stronger notion (i.e., every system that has non-malleable security is alemseally secure). Whether

2We do generally treat one piece of information differently from othersigngth of the plaintext. Any encryption system
is going to leak some information about the length of the plaintext, sinceg/oot going to see a 12 megabyte ciphertext
generated from a 10 byte plaintext. Since this information leakage is urdleidt some level, a system designer using
encryption simply needs to keep this in mind and judge how important this is.

33. Goldwasser and S. Micali. “Probabilistic encryptioddurnal of Computer and System Science, Vol. 28, 1984,
pp. 270-299.

4D. Dolev, C. Dwork, and M. Naor. “Non-malleable cryptograpt88td Symposium on Theory of Computing, 1991, pp.
542-552.

Handout 4: Security Models and Reasoning about Security 5

we need the stronger notion depends on what our attack can do, ahthe/dangers to our system are.

2 Indistinguishability

The notion of indistinguishability has a long and important history in computensejeand is based
on the following philosophical question: If we can't tell the differencén®®zn two objects, are they
for all intents and purposes the same? One of the first real uses of tlisatds the famous “Turing
Test” definition of artificial intelligence described by Alan Turing in 1950sdimeone claims to have
a program that is truly an artificial intelligence program (has the same intatiigas a person), then
consider an experiment in which a person (the interrogator) interacts ihir ¢his program (A) or a
real person (B) through a chat-like interface, and the chat partnétdem behind a wall as illustrated

g
%

Interrogator
Credit: Slight modification of an image by Hugo Feree

The interrogator can ask the mystery chat partner to describe thingeesonmshould know, or reason
about things, or analyze a situation, or simply carry on a natural cati@msabout the weather. If the
interrogator truly can't distinguish between a human and this program,itisrétural to say that this
program is “thinking” in the same way that a person does?

Or consider another situation in which a human distinguisher is important: losgyression. Com-
pressing music using the MP3 algorithm can result in a high quality file that i§iftmer less the size of
the best lossless compression, but since it is “lossy” the exact originaldile cannot be reproduced.
People who work in lossy compression do human tests in which they playrmiynadodered samples,
with the original music and the compressed version, to see if people cartheedifference. If the
listener can’t distinguish between the two, then does it really matter if some ofitfieral information
was lost?

In cryptography, the distinguisher is not a human: we're interested ithgh¢hings are indistin-
guishable to an adversary, which we defined earlier as a probabilisticqroigihtime algorithm. If we
have two objects (which could be ciphertexts or something else) for whigmatmbilistic polynomial
time algorithm can tell the difference, then we say these objectsoamautationally indistinguishable.
This turns out to be a very powerful notion, and is the cornerstone of matgptographic arguments
as we'll see next.

6 Handout 4: Security Models and Reasoning about Security

3 Security Gamesfor Encryption

Returning to the appealing notion of semantic security, recall that this meanth¢hadversary can
get no information whatsoever out of a ciphertext. If the adversarydcprocess a ciphertext and
determine whether the corresponding plaintext were even or odd, themld distinguish between
encryptions of even and odd values. If it could determine whether theg@kainere a perfect square, it
could distinguish between encryptions of squares and non-squarest,lif the adversary can get any
information at all from the ciphertext, we can view this as a distinguishabilithlpro: For whatever
property is being discovered about the plaintext, an adversary coeddiectwo plaintextg, andp; so
thatpg has the property (i.e., is even, is a perfect square, ...paddes not. Then we ask this: can the
adversary distinguish between encryptionpoandp, ?

3.1 Chosen-Plaintext Game and Semantic Security

We first consider the chosen-plaintext model and turn this into a game awdolthe adversary is
defined by two different algorithms, both of which have access to arygtian oracle. The adversary
operation is divided into two phases: (1) the setup phase is dengtgd) and allows the allows the
adversary to make test encryptions and otherwise probe the encrygiiems in order to come up with
two plaintextgy andp; for which it believes it can distinguish between their ciphertexts, wherertlye o
restriction is thatpy| = |p1|; and (2) the processing phase, writtéfi(c), where the adversary takes a
ciphertextc that corresponds to one of these plaintexts and processes this to madssa g0, 1} as

to which plaintext was encrypted to foren We allow the adversary to maintain internal state between
A; and A,, and there are technical reasons for writing theparameter ag* that follow from our
requirement that all adversary algorithms be polynomial time, but theseoare sf the details that
we're glossing over in this handout.

Based on this description of the game, consider this as two different gparasjeterized by a bit
that determines which plaintext is encrypted. In other words, we actuallytihao game£PA-Game
and CPA-Game;, and the adversary doesn’t know which it is playing — its goal is to distifguis
between these two games and correctly guess which game it is playing. \idemmatize all of this into
the following game definition.

CPA-Gamey(\):
(po,p1) < A5 (1Y)
¢« E(pp)
g+ Af(c)

If ¢ =bthenA wins!

And finally, let’s consider what happens when we pick thebladt random, so it has equal probability
of being 0 or 1. The question we ask then is: What is the probability that thersaty will win this
game? It's tempting to think that a really bad adversary can't win, so hdmbpildy of winning close
to 0. However, that's not the case: a really bad adversary in facts Wihspvmbability%, as we see in
the next example.

Example 2. Consider an adversary that picks two random plaintextefandp; in the
setup phase, and then in the processing phase always returis This simple adversary
wins exactly wherb = 0, and since we pick randomly this happens with probabiligy

Handout 4: Security Models and Reasoning about Security 7

It's tempting to say that we can adjust the selectioh sb that we can make the probability of the ad-
versary winning very small — for example, if we know that the adversangiisg the strategy described

in Example 2, we could just pick = 1 and then the adversary would always lose. Can we force the
adversary to lose for all secure systems? You can answer that quagtianking through the following
exercise.

Question 1. What if the setup is the same as in Example 2 above, but now we do not have
to pick b randomly — we can pick whatever we think would be worst for the advgssar
strategy. Now consider an adversary that simply flips a coin and rejun8 with proba-

bility % and returng; = 1 with probability%. What is the probability the at the adversary
wins the game in this situation? Does it matter how we pizk

This leads to our final concept: thdvantage of an adversary for a particular game. Since our “baseline
winning probability is% we define the advantage of an adversarin gameG as the distance to this
baseline probability. We denote the advantage of adverédoy gameG and security parameterby
Advg, A(N), and then the formal definition is

Advga()) = |Prob(A wins gameG (1)) — % |)

The absolute value is there because we are only interested in how fa%fﬂmerwinning probability is,
not whether it is larger or smaller than

Question 2. It seems like the adversary would really want its winning probability to be
greater than} so that it wins more often than just random guessing. However, the a&bsolu
value in equation (1) destroys the information about whether the adyevgas more than
half the time or loses more than half the time. Why doesn’t this matter? (Hint: Camout
turn an adversary that wins with probability less t@'rmto one that wins with probability
greater thar} ?)

Our goal then is to make cryptographic schemes such that the advantagefas émy adversary. The
next question to ask is then this: Is it possible for an encryption schemet talloov any positive
advantage at all? You can discover the answer to this in the following question

Question 3. Consider an encryption scheme that uadsit encryption keys, so the key
size is chosen to match the security parameter. Now consider an advinaiadpes the
following: At the beginning of the setup phase, the adversary picks dorarkeyk <
{0,1}* for the encryption scheme, and then does some test encryptions to skenthis

key can decrypt the test encryptions properly, verifying whether it hest¢he key being
used by the encryption oracle. After this testing, the adversary picksamgnm plaintexts

po andpy, and returns the paipg, p1). For the processing phase, if the keyassed the
tests in the setup phase, then the adversary uses that key to decrgptesipphand so can
pick the correct bit for its guesg If the random key did not pass the tests in the setup
phase, then we lgtbe a randomly selected bit with equal probability of being 0 or 1. What
is the advantage of this adversary? (Note: There’s a subtle point heo¢ &@hether a key

k could pass the tests in the setup phase and yet still be different fromythesé&d by the

8 Handout 4: Security Models and Reasoning about Security

encryption oracle — for the purpose of this question you can ignore thisagsume that
wheneverk passes the encryption tests it actually is the same as the oracle’s key.)

While we can’t require that the advantage of our adversary be zexaomvant it to be very small.
Similar to the way we consider “polynomial time” to be efficient for algorithms, s aise the
polynomial/non-polynomial distinction to define what it means for an adwetsdibreak” an encryp-
tion scheme. In particular, adversaflybreaks a cryptographic scheme in the sense of a dalrife
Advg a(A) > % for some constant > 0 and all sufficiently large\. In other words, the advantage is
at least the reciprocal of some polynomial.

The opposite of a function (like a probability) that is lower bounded by tbiprecal of a polynomial
is the notion of anegligible function: a functionf () is negligible if for every constant> 1 there exists
anng > 1 such thatf(\) < Ai for all A > ng. Thus, an adversary fails to break an encryption scheme
if its advantage in the security game is negligible.

The complementary side of this definition of a “break in security” providesag tw define a se-
cure encryption scheme. In particular, an encryption scherseelse against chosen-plaintext attacks
if there is no probabilistic polynomial time adversary that can break the ptienyscheme. Or put
another way, the scheme is secure if every probabilistic polynomial timesadydras a negligible ad-
vantage in the chosen-plaintext game. In the cryptography literature attiisypar definition of security
is called “IND-CPA security”, which stands for “indistinguishability undéosen-plaintext attack se-
curity.” Let's look at an example of applying all of these definitions to a peablem.

Example 3. Using these notions of security, we have a very firm and clear basis now to
show why ECB mode is not chosen-plaintext secure, and hence stoalditled whenever
possible. In particular, consider the following adversary definition:

A§(1M): // Block size) bits AS(c):
po < 0* // A blocks of 0’s if ¢ =£(0") then
p1 < 1/ Ablock of all 1's return O
return (po,p1) else
return 1

Since ECB mode is deterministic, the call to the encryption orac#@n) will return the
same ciphertext as the game oracle produced for input4g if and only if the oracle
was playing the game with = 0, so the adversary will always win the game! Since the
probability that the adversary wins is 1, the advantage of the adver%a,ryvh;’ch is clearly

a non-negligible probability. Therefore this adversary breaks theisgotiIECB mode, and
shows that ECB mode i®t secure against chosen plaintext attacks.

This adversary in fact wins agairesty deterministic encryption schemameaning that no deterministic
encryption scheme can be secure against chosen-plaintext attadkssuffrises a lot of people who
tend to think of encryption schemes as deterministic: feed in plaintext, andetdhegsame ciphertext
each time (although it looks like incomprehensible gibberish). This obsemviatibe theoretical justi-

fication that has led to the way encryption is used in practice: no encrymiwn® is used in practice

5The scheme also needs to siateless so that it does the same thing every time the encryption oracle is invoked. All
encryption schemes we look at are stateless, so this is a technicality fexamples, but is important in a general setting.

Handout 4: Security Models and Reasoning about Security 9

without adding some randomization. Block ciphers use modes (like CBC maatepttoduce a ran-
dom initialization vector (1V), and in-practice use of RSA (which we’ll stualer) includes randomized
padding technigues such as OAEP.

Question 4. In Example 3, it was shown that ECB mode is insecure with respect to chosen
plaintext attacks using an adversary that made a single call to the encrgpdicle. It is
actually possible to define an adversary that breaks chosen-plaietexitg without using

the encryption oracle directly at all! Define such an adversary. (HinkeMhe challenge
plaintexts multiple blocks so that you can look for block-to-block patterns ipigtesrtext.)

We have seen that any deterministic encryption scheme, including ECB mragledoure block cipher,
cannot be secure against chosen-plaintext attacks. While it's easpuotisht some schemes amet
secure, what we really want apesitive results. showing that a particular cipher is secure. While there
are many such examples, there are no particularly simple examples for symenetyiption schemes,
and the level of these proofs goes beyond the level of these notes.

There is one particularly important thing to know about positive resultsetaer no known abso-
lute proofs of security — everything is conditional, based on some assumpiiwrexample, you can
show that CTR mode with a random starting counter value is IND-CPA seassaming that the un-
derlying block cipher is a pseudo-random function. That assumption is defined according to a different
cryptographic game (indistinguishability between a truly random and a pseumdlom function), but
is an assumption and we don’t know if it is true for any real cipher (eixfmpthe stateful one-time
pad). Several times in class | have referred to the output of cryptbgrémctions with the completely
non-technical phrase “looks like random gibberish” — a pseudoenaniinction is the formalization
of this notion, where the output doesn't just look like random gibberishutceges (which are easy to
fool!), but is indistinguishable from random for any probabilistic polyndrtirae algorithm. The proof
of security for CTR mode using this assumption isn’t too complicated for anyothis class to follow,
but is more involved than what we’ll discuss. If you are interested, yufind the full proof in the
Bellare and Rogaway lecture notes that were mentioned at the beginning batidout — while there
may be different versions of these notes, in my copy this is labeled as sécfidn“Proof of Theorem
4.13” (the proof itself is about 3.5 pages long, and relies on the formaiitiefi of pseudo-random
functions).

Why must any positive result be based on an assumption? The reason is tedome very
fundamental computer science. Recall that the most famous and importaiechcomputer science
problem today is thé” vs. N P problem. If you could prove that eithdt = NP or P # NP then
great fame and fortune would be yours. It turns out tha® i= N P then you can win the chosen-
plaintext game for any stateless cipher — if you are familiar with the “guessheack” formulation
of the classV P, what we're doing is guessing the encryption key and checking it usingesample
encryptions. So the logical statement here isPif= N P then no stateless encryption scheme can be
IND-CPA secure,” and so through the logical contrapositive we haweduivalent statement “if there
exists a stateless encryption scheme that is IND-CPA secure AhénV P.” Therefore, if you could
prove some stateless symmetric cipher were IND-CPA secure, without makyngssumptions, then
you would have just proved th& # N P — which would be followed by fame, fortune, and a solid
place in the history books. The difficulty of such proofs is precisely whgeurity proofs are based
on some assumption.

10 Handout 4: Security Models and Reasoning about Security

Relation of the chosen-plaintext game to semantic securityhe first section, we described notions
of security that matched our intuition as to what “secure” means. Then indht®as, it seems like
we've gotten side-tracked designing games that make some sense, liutal@nthe same level of
intuitive appeal. The main benefit of the games are that the definitions agihtfweward and they make
analysis much more simple than trying to wrestle with the formalities required forrgensecurity.
Now the great news: these two notions are in fact equivalent! In othesyan encryption scheme
is semantically secure if and only if it is secure in the chosen-plaintext gammat. rieans we get the
intuitively appealing notion of semantic security, while dealing with the much simplfanitiens of
game-based security.

3.2 Chosen-Ciphertext Game and Non-Malleable Security

In the last section we defined a game for chosen-plaintext security. Isdbi®n, we consider giving
the adversary access to a decryption oracle as well as an encrypdiclie,aresulting in the chosen-
ciphertext game:

CCA-Gamey(\):
(po,p1) = AT (1%)
c < E(pp)
g A‘S’D(c) /I Note: A is not permitted to calD(c)
If g =bthenA wins!

In addition to adding access to the decryption oracle, there is one complicHtitne adversary has
unrestricted access to the decryption oracle after the challenge cighagéxown, then the adversary
could just decrypt and find which of the challenge plaintexts was encrypted. To avoid this @$vio
problem, we make a simple change: once ciphertéxds been produced, we simply don't alloty

to call the decryption oracle with this ciphertext. There are no other restricta the oracles calls,
and all other notions such as advantage are the same as in IND-CPAysethe result is what we
call IND-CCAZ2 security (the “2” isn’t a typo, and is important, but since themidout doesn’t cover the
other style of CCA security we don'’t need to go into what makes this the destpie of CCA security).

Example 4. Consider random-start CTR mode encryption with a generalized blockrciphe
like we used in previous examples. In the last section we mentioned that satteme

is IND-CPA secure if the underlying block cipher is pseudo-random. dthi style of
encryption we first pick a random initialization vector (IV), and then prmla sequence

of pseudo-random bit vectors by callifgy = Cipher(IV), Ry = Cipher(IV + 1),

Ry = Clipher(IV + 2), --- and then computing ciphertext blocks @ = Py @ Ry,

Cy = P ® Ry,Cy = P ® Ry, ---. The final ciphertext is thefV' V, Cy, Cy, Cs, - - -). Now
define an adversary as follows.

Handout 4: Security Models and Reasoning about Security 11

AS(c): Il Note: cis of the form(1V, Cp)
d = (IV,Co @ 0N 11)
/

A§(1M): /1 Block size bits =D(c)
po < 0™ /1 A blocks of 0’s if p =0"11then
p1 < 12/l Ablock of all 1’s return O
return (po,p1) else
return 1

Sinced differs fromc, it doesn't trigger the restriction on decryption oracle calls. However,
all we've done is flipped the last bit of the ciphertext — and since decnytist results

in the original plaintext with the last bit similarly flipped, we can easily recogmiléech

of the two challenge plaintexts was encrypted. The probability that the satyewins this
game is 1, giving an advantage §f Therefore, CTR mode isot secure with respect to
chosen-ciphertext attacks.

Just like IND-CPA security is equivalent to semantic security, it turns aattithD-CCA2 security is
equivalent to non-malleable security. Our last example gave some hintsthtsorelationship: we put
in a restriction that the decryption oracle is not allowed to ¥kt), but if the encryption scheme is
malleable then we can modifyto produce a related ciphertext for which the associated plaintext
is related tg in a meaningful way. Thus the adversary can “get around” the restriotidhe decryption
oracle by callingD(¢’) to getp’. Since malleability says we know the relationgdto p, the adversary
can now compute and determine which of the challenge plaintexts was encrypted.

