
The University of North Carolina at Greensboro Handout 11
CSC 580: Cryptography and Security in Computing April 14, 2014
Prof. Stephen R. Tate

Assignment 6 – Due Monday, April 28

1. Consider the following authentication scheme, which is a slightly simplified version of standard
HTML digest authentication. Using a secure cryptographic hash functionH (meeting all security
goals given in Table 11.1), if the user with user idu has passwordp, then the server storesy =
H(u‖p) in its user database. Then when a user seeks to authenticate, the server generates a
random noncen which it sends to the client system, which in turn gets a user nameu and password
p from the user, computesz = H(H(u‖p)‖n) locally and sends the result back to the server. The
server can then computeH(y‖n) and see if these values match. Answer the following questions,
with explanations (they’re not really just yes/no questions!).

(a) An eavesdropper sees bothn andz as they are transmitted. Can the eavesdropper figure out
the user’s password?

(b) An attacker breaks into the server, copies the authentication database, so learns the valuey.
Can she compute the user’s password from this?

(c) If an attacker obtains the server’s user database, and consequently learnsy, can the attacker
log in to the system as useru?

2. Clearly a hash function that has the strong collision resistance propertyalso has weak collision
resistance. What about the next step down? Does a hash function that has weak collision resis-
tance also satisfy the one-way property (see Table 11.1 on page 323 forthese terms)? To answer
this question, consider a hash functionH(x) that producesk-bit hash codes, and satisfies all three
of these security properties. Now construct a hash functionH ′(x) that produces(k + 1)-bit hash
codes as follows: Ifx is exactlyk bits long, then output0‖x (a single 0 bit followed byx); other-
wise output1‖H(x) (a single 1 bit followed by theH-hash code ofx). IsH ′(x) weakly collision
resistant? Is it one-way? Justify your answers!

3. With a basic understanding of hash functions, you can understand what a “proof of work” prob-
lem is, which is integral to systems like Bitcoin. Use Google to find reliable references that
describe how a “proof of work” is implemented in Bitcoin, and describe this process in your own
words. What cryptographic property of hash functions is most relevant for such a proof of work
to provided the necessary properties?

4. ElGamal encryption was described in Section 10.2 of the textbook. In this problem, you are to
explore how ElGamal measures up in terms of the formal security models we discussed.

(a) It is impossible for “textbook RSA” to be IND-CPA secure. Why is that, and does ElGamal
have the same problem?



2 Handout 11: Assignment 6 – Due Monday, April 28

(b) Let (C1, C2) be an ElGamal ciphertext, computed as shown in Figure 10.3 (page 293).
Write out formulas (in terms ofα, k, YA andM ) for α · C1 andYA · C2, where operations
are preformed modq.

(c) What result would be produced if you ran fake ElGamal ciphertext(α ·C1, YA ·C2) through
the ElGamal decryption function?

(d) Use these observations to create an attack algorithm that wins the CCA game against ElGa-
mal. In addition to describing the algorithms, remember to analyze the advantage of your
adversary in this game.

As an aside, the message you should learn from this problem is that textbook RSA cannot be IND-
CPA secure, much less IND-CCA secure. ElGamal in fact does turn out to be IND-CPA secure,
but it is not IND-CCA secure.

5. This is a programming problem. The standard way to compute multiplicative inverses modulop
is to use the Extended Euclidean Algorithm, as described in Chapter 4. When the modulusp is
prime, you can also computeap−2 mod p, which will give the multiplicative inverse ofa.

(a) Why isap−2 mod p the multiplicative inverse ofa? The reason is pretty simple, so don’t
give a long convoluted argument — a single, unambiguous sentence is all you need!

(b) Implement both of these methods for large (1000+ bit) integers. Note thatif you are careful
about your choice of programming language, you can use a built-in function for the modular
powering so that this second implementation would be a single line!

Once you are sure your implementations work correctly, time them on a 1024-bit modulus.
To do this, you’ll need a 1024-bit prime — the best way for you to do this would be to
find a way to generate your own large random prime, either by typing up the Miller-Rabin
primality testing algorithm, or using any of the mathematics packages that have this func-
tionality built in. If you really can’t generate your own large random prime,you can use the
one linked from this assignment on the class web page (you’ll still have to get it into your
program!). Note that your programs should be too fast to accurately time directly without
using some advanced profiling tools. The easiest way around this is to iterateyour test as
many times as necessary so that the overall time is around 30 seconds. If you iteraten times,
just divide your final time byn and you’ve got the time for one modular inverse calculation.

6. This question is based on “Case Study 2” (Analysis of an electronic votingsystem) that is available
in the “Readings” section of the class web page.

(a) Novices often underestimate how important good randomization is to security. Describe two
different aspects in which algorithms/protocols in the studied electronic votingsystem were
either deterministic or used poor randomization, leading to security vulnerabilities. For each
one, describe what the software did, what vulnerability this leads to (givean actual attack!),
and how to correct the problem.

(b) The key used for DES, as described in Section 4.4, is hard-coded inthe software, which
is terrible. Furthermore, while the key looks like it should be a densely-codehexadecimal



Handout 11: Assignment 6 – Due Monday, April 28 3

value, it is really a string of ASCII characters. If you didn’t have access to the software, but
wanted to brute force this key, how difficult would it be? To answer this question, ...

– If the key is a string of ASCII characters, where each character is either a digit (0-9),
an uppercase letter in the range A-F, or a lowercase letter ’h’, what is thesize of the
keyspace? DES brute-forcing software written for GPUs can test a little over a billion
keys/second — how much time would it take to brute force a key from this keyspace?

– Repeat the preceding calculations (size of keyspace and time to brute force) if they keys
were less restricted: characters can be any uppercase or lowercaseletter in addition to
any digit.

• The authors suggest using a voter-verified paper audit trail (this doesexist on all electronic
voting machines that I have used in North Carolina). Lets say that there are10,000 electronic
voting machines in North Carolina (this is a number I just made up, and it’s probably way
off the mark) — if an adversary decided that they needed to tamper with 10% of the voting
machines in order to have a significant chance of affecting the outcome of the election, and
an audit of the paper-trail would reveal any malicious activity, how many randomly chosen
machines should be audited so that the probability of detecting the fraud is over 95%?


