Assignment 2 – Due Tuesday, February 16 Chapters 4–5

- 1. Compute the following GCD's using the Euclidean algorithm presented in Section 4.2. Show each step and intermediate result.
 - (a) gcd(20259, 41962)
 - (b) gcd(750588,374851)
- 2. Compute gcd(472,7107) using the *Extended* Euclidean algorithm given in Section 4.3. Show each step and intermediate result. Note that for inputs a and b, the Extended Euclidean algorithm finds not only gcd(a,b) but also values x and y so that ax + by = gcd(a,b) make sure you clearly mark x and y in your final answer.
- 3. Textbook page 125, Problem 4.2
- 4. Textbook page 125, Problem 4.3
- 5. Textbook page 126, Problem 4.12, adding the additional requirement that a and b are natural numbers, and for part (a) further assume that $a \ge b$ this way no values will be negative.
- 6. For the following questions, use polynomial arithmetic over GF(2):
 - (a) What is the product of $x^5 + x^4 + 1$ and $x^5 + x^4 + x^3$?
 - (b) What are the quotient and remainder when $x^{10}+x^7+x^5+x^4+x^3$ is divided by $x^8+x^4+x^3+x+1$?
 - (c) What is the product of $x^5 + x^4 + 1$ and $x^5 + x^4 + x^3$ modulo $x^8 + x^4 + x^3 + x + 1$?
- 7. Pick two random 8-bit values, x and y, write them in hexadecimal, with the only condition being that the number of "1 bits" in each of x and y must be between 3 and 6 bits (inclusive). Next, treating these as elements from $GF(2^8)$ (using the "AES modulus" of $m(x) = x^8 + x^4 + x^3 + x + 1$), calculate the product of x and y— show your work, and for full credit do all operations in binary representation (don't write out polynomials)! [This problem and the next two are "create your own unique problem" problems. If you pick random values, then your values and your problem/solution will be different from everyone else's in the class.]
- 8. Select a random 8-bit value (with at least 2 bits set to 1), and show the work required to find the AES S-box mapping for this value. Your final result should agree with the look-up table given in Table 5.2. [Hint: You can select your 8-bit value so that it is "easy to invert," but you should still have some randomness in your selection don't just pick the easiest value.]

- 9. For this question, you are to work through the first four steps of AES encryption (the initial AddRoundKey followed by the first 3 steps in round 1). Show enough work to demonstrate how you calculated the result of each step.
 - (a) Pick a 16 byte plaintext and 16 byte key. You can pick some random values, or write down some pattern, but don't use anything obvious I don't want to see any two students with the same values! Write down your values in the 4×4 state matrix form used in the book.
 - (b) Perform the initial AddRoundKey step on the values from (a).
 - (c) Perform SubBytes on the result of part (b).
 - (d) Perform ShiftRows on the result of part (c).
 - (e) Perform MixColumns on the result of part (d).