
CSC 580
Cryptography and Computer Security

Math for Public Key Crypto, RSA, and Diffie-Hellman
(Sections 2.4-2.6, 2.8, 9.2, 10.1-10.2)

March 21, 2017

Overview

Today:
● Math needed for basic public-key crypto algorithms

● RSA and Diffie-Hellman

Next:
● Read Chapter 11 (skip SHA-512 logic and SHA3 iteration function)

● Project phase 3 due in one week (March 28) - finish it!

Background / Context

Recall example “trapdoor” function from last time: Given a
number n, how many positive integers divide evenly into n?
● If you know the prime factorization of n, this is easy.
● If you don’t know the factorization, don’t know efficient solution

How does this fit into the public key crypto model?
● Pick two large (e.g., 1024-bit) prime numbers p and q
● Compute the product n = p * q
● Public key is n (hard to find p and q!), private is the pair (p,q)

Questions:
● How do we pick (or detect) large prime numbers?
● How do we use this trapdoor knowledge to encrypt?

Prime Numbers

A prime number is a number p for which its only positive divisors
are 1 and p

Question: How common are prime numbers?
● The Prime Number Theorem states that there are approximately

n / ln n prime numbers less than n.

● Picking a random b-bit number, probability that it is prime is
approximately 1/ln(2b) = (1/ln 2)*(1/b) ≈ 1.44 * (1/b)
○ For 1024-bit numbers this is about 1/710
○ “Pick random 1024-bit numbers until one is prime” takes on average

710 trials
○ This is efficient - if we can tell when a number is prime!

Primality Testing
Problem: Given a number n, is it prime?

Basic algorithm: Try dividing all numbers 2,..,sqrt(n) into n

Question: How long does this take if n is 1024 bits?

Fermat’s Little Theorem

To do better, we need to understand some properties of prime
numbers, such as…

Fermat’s Little Theorem: If p is prime and a is a positive integer
not divisible by p, then

ap-1 ≡ 1 (mod p) .

Proof is on page 46 of the textbook (not difficult!).

Fermat’s Little Theorem - cont’d

Explore this formula for different values of n and random a’s:
a an-1 mod n

(n = 221)
an-1 mod n
(n = 331)

an-1 mod n
(n = 441)

an-1 mod n
(n = 541)

64 1 1 379 1

189 152 1 0 1

82 191 1 46 1

147 217 1 0 1

113 217 1 232 1

198 81 1 270 1

Question 1: What conclusion can be drawn about the primality of 221?

Question 2: What conclusion can be drawn about the primality of 331?

Primality Testing - First Attempt
Tempting (but incorrect) primality testing algorithm for n:

Pick random a ∈ {2, ... , n-2}
if an-1 mod n ≠ 1 then return “not prime”
else return “probably prime”

Why doesn’t this work?

Primality Testing - First Attempt
Tempting (but incorrect) primality testing algorithm for n:

Pick random a ∈ {2, ... , n-2}
if an-1 mod n ≠ 1 then return “not prime”
else return “probably prime”

Why doesn’t this work? Carmichael numbers….

Example: 2465 is obviously not prime, but

Note: Not just for these a’s, but an-1 mod n = 1
for all a’s that are relatively prime to n.

a an-1 mod n
(n = 2465)

64 1

189 1

82 1

147 1

113 1

198 1

Primality Testing - Miller-Rabin
The previous idea is good, with some modifications
(Note: This corrects a couple of typos in the textbook):

MILLER-RABIN-TEST(n) // Assume n is odd
Find k>0 and q odd such that n-1 = 2kq
Pick random a ∈ {2, ... , n-2}
x = aq mod n
if x = 1 or x = n-1 then return “possible prime”
for j = 1 to k-1 do

x = x2 mod n
if x = n-1 then return “possible prime”

return “composite”

If n is prime, always returns “possible prime”
If n is composite, says “possible prime” with probability < ¼

Idea: Run 50 times, and accept as prime iff all say “possible prime”
Question: What is the error probability?

Euler’s Totient Function and Theorem

Euler’s totient function: ᶰ(n) = number of integers from 1..n-1 that are
relatively prime to n.
● If s(n) is count of 1..n-1 that share a factor with n, ᶰ(n) = n - 1 - s(n)

○ s(n) was our “trapdoor function” example
○ ᶰ(n) easy to compute if factorization of n known
○ Don’t know how to efficiently compute otherwise

● If n is product of two primes, n=p*q, then s(n)=(p-1)+(q-1)=p+q-2
○ So ᶰ(p*q) = p*q - 1 - (p+q-2) = p*q - p - q + 1 = (p-1)*(q-1)

Euler generalized Fermat’s Little Theorem to composite moduli:

Euler’s Theorem: For every a and n that are relatively prime (i.e., gcd(a,n)=1),
aᶰ(n) ≡ 1 (mod n) .

Question: How does this simplify if n is prime?

RSA Algorithm
Key Generation:

Pick two large primes p and q
Calculate n=p*q and ᶰ(n)=(p-1)*(q-1)
Pick a random e such that gcd(e, ᶰ(n))
Compute d = e-1 (mod ᶰ(n)) [Use extended GCD algorithm!]
Public key is PU=(n,e) ; Private key is PR=(n,d)

Encryption of message M ∈ {0,..,n-1}:
E(PU,M) = Me mod n

Decryption of ciphertext C ∈ {0,..,n-1}:
D(PR,C) = Cd mod n

RSA Algorithm
Key Generation:

Pick two large primes p and q
Calculate n=p*q and ᶰ(n)=(p-1)*(q-1)
Pick a random e such that gcd(e, ᶰ(n))
Compute d = e-1 (mod ᶰ(n)) [Use extended GCD algorithm!]
Public key is PU=(n,e) ; Private key is PR=(n,d)

Encryption of message M ∈ {0,..,n-1}:
E(PU,M) = Me mod n

Decryption of ciphertext C ∈ {0,..,n-1}:
D(PR,C) = Cd mod n

Correctness - easy when gcd(M,n)=1:

D(PR,E(PU,M)) = (Me)d mod n
 = Med mod n
 = Mkᶰ(n)+1 mod n
 = (Mᶰ(n))k M mod n
 = M

Also works when gcd(M,n)≠1, but
slightly harder to show...

RSA Example

Simple example:
p = 73, q = 89
n = p*q = 73*89 = 6497
ᶰ(n) = (p-1)*(q-1) = 72*88 = 6336
e = 5
d = 5069 [Note: 5*5069 = 25,345 = 4*6336 + 1]

Encrypting message M=1234:
12345 mod 6497 = 1881

Decrypting:
18815069 mod 6497 = 1234

Note: If time allows in class, more examples using Python!

The Discrete Log Problem
For every prime number p, there exists a primitive root (or “generator”)
g such that

g1, g2, g3, g4, …, gp-2, gp-1 (all taken mod p)
are all distinct values (so a permutation of 1, 2, 3, ..., p-1).

Example: 3 is a primitive root of 17, with powers:
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3i mod 17 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1

fg,p(i) = gi mod p is a bijective mapping on {1,.., p-1}

fg,p(i) is easy to compute (modular powering algorithm)

Inverse, written dlogg,p(x) = fg,p
-1(x), is believed to be difficult to compute

g and p are global
public parameters

Diffie-Hellman Key Exchange
Assume g and p are known, public parameters

Bob
b ← random value from {1, …, p-1}
B ← gb mod p

Alice
a ← random value from {1, …, p-1}
A ← ga mod p

Send A to Bob

Send B to Alice

Sa ← Ba mod p Sb ← Ab mod p

In the end, Alice’s secret (Sa) is the same as Bob’s secret (Sb):

Sa = Ba = gba = gab = Ab = Sb

Eavesdropper knows A and B, but to get a or b requires solving
the discrete logarithm problem!

Abstracting the Problem
There are many sets over which we can define powering.

Example: Can look at powers of n❌n matrices (A2, A3, etc.)

Any finite set S with an element g such that fg: S → S is a bijection
(where fg(x) = gx for all x ∈ S) is called a cyclic group
● Very cool math here - see Chapter 5 for more info (optional)

If fg is easy to compute and fg
-1 is difficult, then can do Diffie-Hellman

“Elliptic Curves” are a mathematical object with this property

In fact: fg
-1 seems to be harder to compute for Elliptic Curves than Zp

● Consequence: Elliptic Curves can use shorter numbers/keys than standard
Diffie-Hellman - so faster and less communication required!

Revisiting Key Sizes
From NIST publication 800-57a

Issue: PK algorithms based on mathematical relationships, and can be broken
with algorithms that are faster than brute force.

We spent time getting a feel for how big symmetric cipher\ keys needed to be
➔ How big do keys in a public key system need to be?

From NIST pub 800-57a:

