CSC 580 Cryptography and Computer Security

Math for Public Key Crypto, RSA, and Diffie-Hellman (Sections 2.4-2.6, 2.8, 9.2, 10.1-10.2)

March 21, 2017

Overview

Today:

- Math needed for basic public-key crypto algorithms
- RSA and Diffie-Hellman

Next:

- Read Chapter 11 (skip SHA-512 logic and SHA3 iteration function)
- Project phase 3 due in one week (March 28) - finish it!

Background / Context

Recall example "trapdoor" function from last time: Given a number n, how many positive integers divide evenly into n ?

- If you know the prime factorization of n, this is easy.
- If you don't know the factorization, don't know efficient solution

How does this fit into the public key crypto model?

- Pick two large (e.g., 1024-bit) prime numbers p and q
- Compute the product $n=p^{*} q$
- Public key is n (hard to find p and $q!$), private is the pair (p, q)

Questions:

- How do we pick (or detect) large prime numbers?
- How do we use this trapdoor knowledge to encrypt?

Prime Numbers

A prime number is a number p for which its only positive divisors are 1 and p

Question: How common are prime numbers?

- The Prime Number Theorem states that there are approximately $n / \ln n$ prime numbers less than n. \qquad
- Picking a random b-bit number, probability that it is prime is approximately $1 / \ln \left(2^{b}\right)=(1 / \ln 2)^{*}(1 / b) \approx 1.44^{*}(1 / b)$
- For 1024 -bit numbers this is about $1 / 710$
- "Pick random 1024-bit numbers until one is prime" takes on average 710 trials
- This is efficient - if we can tell when a number is prime! \qquad
\qquad

Primality Testing

Problem: Given a number n , is it prime? \qquad
Basic algorithm: Try dividing all numbers $2, . .$, sqrt(n) into n
Question: How long does this take if n is 1024 bits?
\qquad
\qquad
\qquad
\qquad
\qquad

Fermat's Little Theorem

To do better, we need to understand some properties of prime numbers, such as...

Fermat's Little Theorem: If p is prime and a is a positive integer not divisible by p, then

$$
a^{p-1} \equiv 1(\bmod p)
$$

Proof is on page 46 of the textbook (not difficult!). \qquad
\qquad
\qquad

Fermat's Little Theorem - cont'd

Explore this formula for different values of n and random a's:

a	$a^{n-1} \bmod n$ $(n=221)$	$a^{n-1} \bmod n$ $(n=331)$	$a^{n-1} \bmod n$ $(n=441)$	$a^{n-1} \bmod n$ $(n=541)$
64	1	1	379	1
189	152	1	0	1
82	191	1	46	1
147	217	1	0	1
113	217	1	232	1
198	81	1	270	1

Question 1: What conclusion can be drawn about the primality of 221?
Question 2: What conclusion can be drawn about the primality of 331 ?
\qquad

Primality Testing - First Attempt

Tempting (but incorrect) primality testing algorithm for n :
Pick random $a \in\{2, \ldots, n-2\}$
if $a^{n-1} \bmod n \neq 1$ then return "not prime"
else return "probably prime"

Why doesn't this work?

Primality Testing - First Attempt

Tempting (but incorrect) primality testing algorithm for n :```Pick random a }\in{2,\ldots,n-2 if an-1 mod n \not=1 then return "not prime" else return "probably prime"```		
Why doesn't this work? Carmichael numbers...	a	$\begin{aligned} & a^{n-1} \bmod n \\ & (n=2465) \end{aligned}$
	64	1
Example: 2465 is obviously not prime, but \longrightarrow	189	1
	82	1
Note: Not just for these a^{\prime} ', but $a^{n-1} \bmod n=1$	147	1
for all a's that are relatively prime to n.	113	1
	198	1

Primality Testing - Miller-Rabin

The previous idea is good, with some modifications (Note: This corrects a couple of typos in the textbook):

MILLER-RABIN-TEST(n) // Assume n is odd Find $\mathrm{k}>0$ and q odd such that $\mathrm{n}-1=2^{\mathrm{k}} \mathrm{q}$ Pick random $a \in\{2, \ldots, n-2\}$ $x=a^{a} \bmod n$ if $x=1$ or $x=n-1$ then return "possible prime" for $\mathrm{j}=1$ to $\mathrm{k}-1$ do
$x=x^{2} \bmod n$
if $x=n-1$ then return "possible prime" return "composite"

If n is prime, always returns "possible prime"
If n is composite, says "possible prime" with probability $<1 / 4$
Idea: Run 50 times, and accept as prime iff all say "possible prime" Question: What is the error probability?

Euler's Totient Function and Theorem

Euler's totient function: $\phi(n)=$ number of integers from 1..n-1 that are relatively prime to n.

- If $s(n)$ is count of $1 . . n-1$ that share a factor with $n, \phi(n)=n-1-s(n)$
- $s(n)$ was our "trapdoor function" example
- $\phi(n)$ easy to compute if factorization of n known
- Don't know how to efficiently compute otherwise
- If n is product of two primes, $n=p^{*} q$, then $s(n)=(p-1)+(q-1)=p+q-2$
- $\operatorname{So} \phi\left(p^{*} q\right)=p^{*} q-1-(p+q-2)=p^{*} q-p-q+1=(p-1)^{*}(q-1)$

Euler generalized Fermat's Little Theorem to composite moduli: \qquad
Euler's Theorem: For every a and n that are relatively prime (i.e., $\operatorname{gcd}(a, n)=1$),

$$
a^{\phi(n)} \equiv 1(\bmod n)
$$

Question: How does this simplify if n is prime?

RSA Algorithm

Key Generation:

Pick two large primes p and q
Calculate $n=p^{*} q$ and $\phi(n)=(p-1)^{*}(q-1)$
Pick a random e such that $\operatorname{gcd}(e, \phi(n))$
Compute $d=e^{-1}(\bmod \phi(n))$ [Use extended GCD algorithm!]
Public key is $P U=(n, e)$; Private key is $P R=(n, d)$

Encryption of message $M \in\{0, . ., n-1\}$:
$\mathrm{E}(P U, M)=M^{e} \bmod n$

Decryption of ciphertext $C \in\{0, . ., n-1\}$:
$\mathrm{D}(P R, C)=C^{d} \bmod n$

RSA Algorithm

Key Generation:
Pick two large primes p and q
Calculate $n=p^{*} q$ and $\phi(n)=(p-1)^{*}(q-1)$
Pick a random e such that $\operatorname{gcd}(e, \phi(n))$
Compute $d=e^{-1}(\bmod \phi(n))$ [Use extended GCD algorithm!] Public key is $P U=(n, e)$; Private key is $P R=(n, d)$

Encryption of message $M \in\{0, \ldots, n-1\}:$\begin{tabular}{l}
Correctness - easy when $\operatorname{gcd}(M, n)=1$:

$\mathrm{E}(P U, M)=M^{e} \bmod n$

Decryption of ciphertext $C \in\{0, \ldots, n-1\}:$| $\mathrm{D}(P R, \mathrm{E}(P U, M))=\left(M^{e}\right)^{d} \bmod n$ |
| :--- |
| $=M^{d d} \bmod n$ |
| $=M^{\mu \phi(n)+1} \bmod n$ |
| $=\left(M^{\phi(n)}\right)^{k} M \bmod n$ |
| $=M$ |

$\mathrm{D}(P R, C)=C^{d} \bmod n$

Also works when gcd $(M, n) \neq 1$, but

slightly harder to show...
\end{tabular}

RSA Example

Simple example:
$p=73, q=89$
$\mathrm{n}=\mathrm{p}^{*} \mathrm{q}=73^{*} 89=6497$
$\phi(n)=(\mathrm{p}-1)^{*}(\mathrm{q}-1)=72^{*} 88=6336$
e $=5$
$\mathrm{d}=5069$ [Note: $5^{*} 5069=25,345=4^{*} 6336+1$]
Encrypting message $\mathrm{M}=1234$:
$1234^{5} \bmod 6497=1881$
Decrypting:
$1881^{5069} \bmod 6497=1234$
Note: If time allows in class, more examples using Python!

The Discrete Log Problem

For every prime number p, there exists a primitive root (or "generator") g such that
$g^{1}, g^{2}, g^{3}, g^{4}, \ldots, g^{p-2}, g^{p-1} \quad($ all taken $\bmod p)$
are all distinct values (so a permutation of $1,2,3, \ldots, p-1$).
Example: 3 is a primitive root of 17 , with powers:

$f_{g, p}(i)=g^{i} \bmod p$ is a bijective mapping on $\{1, \ldots, p-1\}$
$f_{g, p}(i)$ is easy to compute (modular powering algorithm) public parameters Inverse, written $\operatorname{dlog}_{g, p}(x)=f_{g, p}^{-1}(x)$, is believed to be difficult to compute

Diffie-Hellman Key Exchange
Assume g and p are known, public parameters

Abstracting the Problem

There are many sets over which we can define powering.
Example: Can look at powers of $n \times n$ matrices (A^{2}, A^{3}, etc.)
Any finite set S with an element g such that $f_{g}: S \rightarrow S$ is a bijection (where $f_{g}(x)=g^{x}$ for all $x \in S$) is called a cyclic group

- Very cool math here - see Chapter 5 for more info (optional)

If f_{g} is easy to compute and $f_{g}{ }^{-1}$ is difficult, then can do Diffie-Hellman
"Elliptic Curves" are a mathematical object with this property
In fact: f_{g}^{-1} seems to be harder to compute for Elliptic Curves than \boldsymbol{Z}_{p}

- Consequence: Elliptic Curves can use shorter numbers/keys than standard Diffie-Hellman - so faster and less communication required!

Revisiting Key Sizes

From NIST publication 800-57a
Issue: PK algorithms based on mathematical relationships, and can be broken with algorithms that are faster than brute force.

We spent time getting a feel for how big symmetric cipherl keys needed to be
\rightarrow How big do keys in a public key system need to be?

From NIST pub 800-57a:	Table 2: Comparable strengths				
	Security Strength	$\begin{array}{\|c} \hline \begin{array}{c} \text { Symmetric } \\ \text { key } \\ \text { algorithms } \end{array} \\ \hline \end{array}$	$\underset{(\mathrm{e}, \mathrm{~g}, \mathrm{DSA}, \mathrm{D}-\mathrm{H})}{\mathrm{FFC}}$	$\underset{(\text { e.g., } \mathrm{RSA})}{\mathrm{IFC}}$	$\underset{(\text { e.g., ECDSA })}{\text { ECC }}$
	≤ 80	2TDEA ${ }^{21}$	$\begin{aligned} L & =1024 \\ N & =160 \end{aligned}$	$k=1024$	$f=160-223$
	112	3TDEA	$\begin{aligned} L & =2048 \\ N & =224 \end{aligned}$	$k=2048$	$f=224.255$
	128	AES-128	$\begin{aligned} L & =3072 \\ N & =256 \end{aligned}$	$k=3072$	$f=256-383$
	192	AES-192	$\begin{gathered} L=7680 \\ N=384 \end{gathered}$	$k=7680$	$f=384-511$
	256	AES-256	$\begin{gathered} L=15360 \\ N=512 \end{gathered}$	$k=15360$	$f=512+$

