CSC 580
Cryptography and Computer Security
Digital Signatures
(Sections 13.1, 13.2, 13.4, 13.6)

Digital Signatures - Idea
Public key encryption idea

Digital Signatures - Idea
Digital signature idea

Digital Signatures - How it Works

Signature scheme consists of three algorithms:

- Generate keypair. Given keylength (security param) gives (PU,PR)
- Sign: Takes message M and $P R$, and produces signature sig
- Verify: Takes M, PU, and sig, and outputs true (verified) or false

Like public key encryption, sign/verify operations are slow!

- So don't run entire (possibly long) message through functions
- First hash, then $\operatorname{sign} \mathrm{H}(M)$

Is this combination secure? Yes! Why: Assume adversary knows valid sigs $\left(M_{1}, \operatorname{sig}_{1}\right),\left(M_{2}, \operatorname{sig}_{2}\right), \ldots,\left(M_{n}, \operatorname{sig}_{n}\right)$ and can find a forgery (M, sig).

- If $\mathrm{H}(M)=\mathrm{H}\left(M_{i}\right)$ for some $M_{i} \rightarrow$ found a collision in H , should be impossible!
- If $\mathrm{H}(M) \neq \mathrm{H}\left(M_{i}\right)$ for all $M_{i} \rightarrow$ then $(\mathrm{H}(M)$,sig) is a forger for sig scheme
\qquad

Digital Signatures - Security Model

$\mathrm{A}^{s}(\mathrm{PU})$
// Arbitrary precomputation
while (not done):
$m=/ /$ compute query message
$\mathrm{s}=S(\mathrm{~m})$
Known $=$ Known $U(m, s)$
// More computing
(m', s') = // compute claimed forgery
Return (m^{\prime}, s^{\prime})
Adversary wins if there is no pair $\left(m^{\prime}, x\right)$ in Known and Verify $\left(m^{\prime}, s^{\prime}\right)=$ true
Note:

- Adversary picks oracle query messages, and can adapt as it learns
- That makes this an "adaptive chosen message" attack
- Any valid signature wins - only restriction is that m' hasn't been queried - That makes this an "existential forgery attack" \qquad
Security is Existentially Unforgeable under Adaptive Chosen Message Attack (EUF-CMA)

EIGamal

As in Diffie-Hellman, let p be a prime and g be a primitive root

Key Generation	Note similarity to 1. Pick random $P R \in\{2, \ldots, p-1\}$ Diffie-Hellman

1. Pick random $P R \in\{2, \ldots, p-1\} \quad$ Niffie-Hellman
2. Compute $P U=g^{P R} \bmod p$
3. Private (signing) key is $P R$; Public (verification) key is $P U$

Signing a message M

1. Pick random $k \in\{2, \ldots, p-1\}$ that is relative prime to ($p-1$)
2. Compute $r=g^{k} \bmod p$
3. Compute $k^{-1} \bmod (p-1)$
4. Compute $s=k^{-1}\left(\mathrm{H}(M)-P R^{\star} r\right) \bmod (\mathrm{p}-1)$
5. Signature is the pair (r, s)

Verifying a signature (r, s) on message M :

1. Check if $g^{H(M)} \equiv P U^{r *} r^{s}(\bmod p) \quad$ [accept if true, reject if false]

ElGamal

As in Diffie-Hellman, let p be a prime and g be a primitive root
Key Generation

1. Pick random $P R \in\{2, \ldots, p-1\} \quad \begin{aligned} & \text { Note similarity to } \\ & \text { Diffie-Hellman }\end{aligned}$
2. Pick random $P R \in\{2, \ldots, p-1\} \quad$ Diffie-Hellman
3. Compute $P U=g^{P R} \bmod p$
4. Private (signing) key is $P R$; Public (verification) key is $P U$

Signing a message M

1. Pick random $k \in\{2, \ldots, p-1\}$ that is relative prime to ($p-1$)
2. Compute $r=g^{k} \bmod p$]
3. Compute $\left.k^{-1} \bmod (p-1)\right\rfloor \longleftarrow$ Observation: Expensive computations 4. Compute $s=k^{-1}\left(\mathrm{H}(M)-P R^{*} r\right) \bmod (\mathrm{p}-1) \quad$ (powering and inverse) don't depend
4. Signature is the pair (r, s) on M - precompute!

Verifying a signature (r, s) on message M :

1. Check if $g^{H(M)} \equiv P U^{r *} r^{s}(\bmod p) \quad$ [accept if true, reject if false]

Why does this work for valid sigs?

Important math fact: If $x \equiv y(\bmod p-1)$ then $a^{x} \equiv a^{y}(\bmod p)$.
Proof: If $x \equiv y(\bmod p-1)$ then there exists a k such that $x-y=k^{*}(p-1)$, so $x=$ $k^{*}(p-1)+y$. Then $a^{x}=a^{k^{k}(p-1)+y}=a^{k^{k}(p-1) \star}+a^{y}=\left(a^{p-1}\right)^{k *} a^{y}$. By Fermat's Little Theorem, we know that $a^{p-1} \bmod p=1$, so $\left(a^{p-1}\right)^{k^{k *}} a^{y} \bmod p=a^{y}$. Therefore $a^{x} \equiv a^{y}(\bmod p)$.

What this means: To simplify $a^{\text {formula }}$, can simplify formula $\bmod (p-1)$.

Applying this to ElGamal formulas: \quad| $P U=g^{P R} \bmod p$ |
| :--- |
| $s=k^{1}\left(H(M)-P R^{*} r\right) \bmod (p-1)$ |

Consider $P U^{r *} r^{s} \equiv g^{P R^{r} r} g^{k^{* s}} \equiv g^{P R^{r} r+k^{* s}}(\bmod \mathrm{p})$, and simplify exponent $\bmod (\mathrm{p}-1)$: $P R^{*} r+k^{*} S \equiv P R^{*} r+k^{*} k^{-1}\left(\mathrm{H}(M)-P R^{*} r\right) \equiv P R^{*} r+\mathrm{H}(M)-P R^{*} r \equiv \mathrm{H}(M) \bmod (\mathrm{p}-1)$

Therefore, $P U^{r *} r^{s} \equiv g^{H(M)}(\bmod p)$

DSA - Digital Signature Algorithm

Compared to EIGamal

ElGamal	DSA
Let $q=p-1$	q is prime such that $q \mid p-1$, and let g be a value with order $q\left[g^{q} \equiv 1(\bmod q)\right]$
Key Generation	Key Generation
1. Pick random $P R \in\{2, \ldots, q\}$	1. Pick random $P R \in\{2, \ldots, q\}$
2. Compute $P U=g^{P R} \bmod p$	2. Compute $P U=g^{P R} \bmod p$
3. Private key is $P R$; Public key is $P U$	3. Private key is $P R$; Public key is $P U$
Signing a message M	Signing a message M
1. Pick rand $k \in\{2, \ldots, q\}$ with $\operatorname{gcd}(\mathrm{k}, \mathrm{q})=1$	1. Pick rand $k \in\{2, \ldots, q-1\}$ 2. Compute $r=\left(g^{k} \bmod p\right) \bmod q$
2. Compute $r=g^{k} \bmod p$	3. Compute $k^{1} \bmod q$
3. Compute $k^{1} \bmod q$	4. Compute $s=k^{-1}\left(\mathrm{H}(M)+P R^{*} r\right) \bmod q$
4. Compute $s=k^{1}\left(\mathrm{H}(M)-P R^{*} r\right) \bmod q$	5. Signature is the pair (r,s)
5. Signature is the pair (r,s)	Verifying signature (r, s) on message M:
Verifying signature (r, s) on message M :	1. Compute $w=s^{-1} \bmod q$
1. Check if $g^{H(M)} \equiv P U^{r *} r^{s}(\bmod p)$	2. Check if $r \equiv\left(P U^{\prime} \times \mathbf{*} g^{H(M) ' w} \bmod p\right) \bmod$

DSA - The Digital Signature Algorithm
History, Parameters, etc.

One component of NIST's Digital Signature Standard (DSS)

- DSS was adopted in 1993
- DSA dates back to 1991
- One goal: Only support integrity - not confidentiality

Why? Export restrictions!

- Alternative signature scheme: RSA - also an encryption algorithm

Key and Parameter Sizes:

- EIGamal is similar to Diffie-Hellman modulus size ($N=$ number of bits)
- 1024-bit p was OK in 1990s - now suggest 2048-bit or 3072-bit
- Signature two N-bit values (e.g., two 1024-bit values)
- DSA uses a computationally-hard subgroup
- In 1990's q was 160 bits (matching SHA1!)
- Signature was then two 160-bit values (more compact than ElGamal)
- Now suggest q being 256 bits

Reminder - RSA Algorithm
 From Public Key Encryption chapter

Key Generation:
Pick two large primes p and q
Calculate $n=p^{*} q$ and $\phi(n)=(p-1)^{*}(q-1)$
Pick a random e such that $\operatorname{gcd}(e, \phi(n))$
Compute $d=e^{-1}(\bmod \phi(n))$ [Use extended GCD algorithm!]
Public key is $P U=(n, e)$; Private key is $P R=(n, d)$
Encryption of message $M \in\{0, . ., n-1\}$:
$\mathrm{E}(P \mathrm{U}, M)=M^{e} \bmod n$
Correctness - easy when $\operatorname{gcd}(M, n)=1$:
$\mathrm{D}(P R, \mathrm{E}(P U, M))=\left(M^{e}\right)^{d} \bmod n$ $=M^{\text {ed }} \bmod n$
$=M^{k \phi(n)+1} \bmod n$
Decryption of ciphertext $C \in\{0, . ., n-1\}$: $\mathrm{D}(P R, C)=C^{d} \bmod n$ $=M$

Also works when $\operatorname{gcd}(M, n) \neq 1$, but slightly harder to show...

RSA Algorithm for Signatures

"Textbook algorithm" - not how it's really done
Key Generation:
Pick two large primes p and q
Calculate $n=p^{*} q$ and $\phi(n)=(p-1)^{*}(q-1)$
Pick a random v such that $\operatorname{gcd}(v, \phi(n))$
Compute $s=v^{1}(\bmod \phi(n))$ [Use extended GCD algorithm!]
Public key is $P U=(n, v)$; Private key is $P R=(n, s)$

Signing message $M \in\{0, . ., n-1\}$:
$\operatorname{Sign}(P R, M)=M^{s} \bmod n$

Verification of signature $\sigma \in\{0, . ., n-1\}$:
Verify $(P U, M, \sigma)$: Check if $M=\sigma^{\vee} \bmod n$

RSA-PSS (Probabilistic Signature Scheme)
How it's really done - with padding (similar to OAEP for encryption)

Invented (and proved secure)
by Bellare and Rogaway

- Also inventors of OAEP and HMAC

Forging sigs w/ "textbook RSA"

- Pick random sig R
- Let message $M=R^{v} \bmod N$
- (M, R) is valid sig pair!

Modifying sigs ("blinding")

- Given $\sigma=M^{s} \bmod N$
- Compute $X=R^{\vee} \bmod N$
- Let $M^{\prime}=X^{\star} M \bmod N$
- Let $\sigma^{\prime}=R^{\star} \sigma \bmod N$
- Note $\left(\sigma^{\prime}\right)^{v}=R^{v} \sigma^{\prime v}=X^{*} M=M^{\prime}$ $(\bmod N)$

