CSC 580 Cryptography and Computer Security

Digital Signatures (Sections 13.1, 13.2, 13.4, 13.6)

Digital Signatures - Idea Public key encryption idea Network Interface Anyone can do this (uses "Public" key) Function Only person with decryption key can do this ("Private" key) Only person with ("Private" key)

Digital Signatures - How it Works

Signature scheme consists of three algorithms:

- Generate keypair: Given keylength (security param) gives (PU,PR)
- Sign: Takes message M and PR, and produces signature sig
- Verify: Takes M, PU, and sig, and outputs true (verified) or false

Like public key encryption, sign/verify operations are slow!

- So don't run entire (possibly long) message through functions
- First hash, then sign H(M)

Is this combination secure? Yes! Why: Assume adversary knows valid sigs (M_1, sig_1) , (M_2, sig_2) , ..., (M_n, sig_n) and can find a forgery (M, sig).

- If $H(M) = H(M_i)$ for some $M_i \to \text{found a collision in H, should be impossible!}$
- If $H(M) \neq H(M_i)$ for all $M_i \rightarrow then (H(M), sig)$ is a forger for sig scheme

Digital Signatures - Security Model

```
// Arbitrary precomputation
while (not done):

m = // compute query message

s = S(m)

Known = Known ∪ (m,s)
// More computing
(m', s') = // compute claimed forgery
Return (m',s')
```

Adversary wins if there is no pair (m',x) in Known and Verify(m',s') = true

- Adversary picks oracle guery messages, and can adapt as it learns
 - o That makes this an "adaptive chosen message" attack
- Any valid signature wins only restriction is that m' hasn't been queried That makes this an "existential forgery attack"

Security is Existentially Unforgeable under Adaptive Chosen Message Attack (EUF-CMA)

EIGamal

As in Diffie-Hellman, let p be a prime and g be a primitive root

Key Generation

- Pick random PR ∈ {2, ..., p-1}
 Compute PU = g^{PR} mod p

Note similarity to Diffie-Hellman

- 3. Private (signing) key is PR; Public (verification) key is PU

Signing a message M

- 1. Pick random $k \in \{2, ..., p-1\}$ that is relative prime to (p-1)
- 2. Compute $r = g^k \mod p$
- 3. Compute k⁻¹ mod (p-1)
- Compute $s = k^{-1} (H(M) PR^*r) \mod (p-1)$
- 5. Signature is the pair (r,s)

Verifying a signature (r,s) on message M: 1. Check if $g^{H(M)} \equiv PU^{r*} r^{e} \pmod{p}$ [accept if true, reject if false]

EIGamal As in Diffie-Hellman, let p be a prime and g be a primitive root Key Generation 1. Pick random $PR \in \{2, ..., p-1\}$ Diffie-Hellman Compute $PU = g^{PR} \mod p$ 3. Private (signing) key is PR; Public (verification) key is PU Signing a message M Pick random $k \in \{2, ..., p-1\}$ that is relative prime to (p-1)Compute $r = g^k \mod p$ 2. Compute $r = g^k \mod p$ 3. Compute $k^{-1} \mod (p-1)$ Observation: Expensive computations Compute $s = k^{-1} (H(M) - PR^*r) \mod (p-1)$ Signature is the pair (r,s)5. Signature is the pair (r,s)Verifying a signature (r,s) on message M: 1. Check if $g^{H(M)} \equiv PU^r * r^s \pmod{p}$ [accept if true, reject if false] Why does this work for valid sigs? <u>Important math fact</u>: If $x \equiv y \pmod{p-1}$ then $a^x \equiv a^y \pmod{p}$. <u>Proof</u>: If $x \equiv y \pmod{p-1}$ then there exists a k such that $x-y=k^*(p-1)$, so x=1 $\overline{k^*(p-1)} + y$. Then $a^x = a^{k^*(p-1)+y} = a^{k^*(p-1)*}a^y = (a^{p-1})^{k*}a^y$. By Fermat's Little Theorem, we know that $a^{p-1} \mod p = 1$, so $(a^{p-1})^{k*}a^y \mod p = a^y$. Therefore $a^x \equiv a^y \pmod p$. What this means: To simplify aformula, can simplify formula mod (p-1).

DSA - Digital Signature Algorithm Compared to ElGamal

ElGamal

Let q = p-1

Key Generation

- Pick random $PR \in \{2, ..., q\}$
- Compute $PU = g^{PR} \mod p$ Private key is PR; Public key is PU

Applying this to ElGamal formulas:

Therefore, $PU^r * r^s \equiv g^{H(M)} \pmod{p}$

Signing a message M

- Pick rand $k \in \{2, ..., q\}$ with gcd(k,q)=1
- Compute $r = g^k \mod p$ Compute $k^1 \mod q$
- Compute $s = k^1 (H(M) PR^*r) \mod q$ Signature is the pair (r.s)
- Verifying signature (r,s) on message M:

Check if $g^{H(M)} \equiv PU^r * r^s \pmod{p}$

 $PU = g^{PR} \mod p$ $s = k^{-1} (H(M) - PR^*r) \mod (p-1)$

Consider $PU^{r*}r^s \equiv g^{PR^*r}g^{k^*s} \equiv g^{PR^*r+k^*s} \pmod{p}$, and simplify exponent mod (p-1): $PR^*r + k^*s \equiv PR^*r + k^*k^1 (H(M) - PR^*r) \equiv PR^*r + H(M) - PR^*r \equiv H(M) \mod (p-1)$

q is prime such that q|p-1, and let g be a value with order q [$g^q \equiv 1 \pmod q$]

- Key Generation

 1. Pick random $PR ∈ \{2, ..., q\}$
- Compute PU = g^{PR} mod p
 Private key is PR; Public key is PU

Signing a message M

- Pick rand $k \in \{2, ..., q-1\}$ Compute $r = (g^k \mod p) \mod q$

- Compute $k^1 \mod q$ Compute $s = k^1 (H(M) + PR^*r) \mod q$
- Signature is the pair (r,s)

Verifying signature (r,s) on message M:

1. Compute $w = s^{-1} \mod q$ 2. Check if $r \equiv (PU^{r^*w} * g^{H(M)^*w} \mod p) \mod q$

DSA - The Digital Signature Algorithm History, Parameters, etc.

One component of NIST's Digital Signature Standard (DSS)

- DSS was adopted in 1993
- DSA dates back to 1991
- One goal: Only support integrity not confidentiality
 - Why? Export restrictions!
 - o Alternative signature scheme: RSA also an encryption algorithm

Key and Parameter Sizes:

- ElGamal is similar to Diffie-Hellman modulus size (N = number of bits)
- Signature two *N*-bit values (e.g., two 1024-bit values)
- DSA uses a computationally-hard subgroup
- o In 1990's q was 160 bits (matching SHA1!)
- Signature was then two 160-bit values (more compact than ElGamal)
- Now suggest q being 256 bits

Reminder - RSA Algorithm

From Public Key Encryption chapter

Key Generation:

Pick two large primes \boldsymbol{p} and \boldsymbol{q} Calculate $n=p^*q$ and $\phi(n)=(p-1)^*(q-1)$ Pick a random e such that $gcd(e, \phi(n))$ Compute $d = e^{-1} \pmod{\phi(n)}$ [Use extended GCD algorithm!] Public key is PU=(n,e); Private key is PR=(n,d)

Encryption of message $M \in \{0,..,n-1\}$:

 $E(PU,M) = M^e \mod n$

Decryption of ciphertext $C \in \{0,..,n-1\}$: $D(PR,C) = C^d \mod n$

Correctness - easy when gcd(M,n)=1:

 $\mathsf{D}(PR,\mathsf{E}(PU,M))=(M^e)^d \bmod n$

- $= M^{ed} \bmod n$ $= M^{k\phi(n)+1} \bmod n$
- $= (M^{\phi(n)})^k M \bmod n$

Also works when $gcd(M,n)\neq 1$, but slightly harder to show.

RSA Algorithm for Signatures

"Textbook algorithm" - not how it's really done

Key Generation:

Pick two large primes p and qCalculate $n=p^*q$ and $\phi(n)=(p-1)^*(q-1)$ Pick a random v such that $\gcd(v,\phi(n))$ Compute $s=v^1 \pmod{\phi(n)}$ [Use extended GCD algorithm!] Public key is PU=(n,v); Private key is PR=(n,s)

Signing message $M \in \{0,..,n-1\}$: $Sign(PR,M) = M^s \mod n$

Verification of signature $\sigma \in \{0,...,n-1\}$: Verify(PU,M,σ): Check if M = $\sigma^v \mod n$

-	

RSA-PSS (Probabilistic Signature Scheme) How it's really done - with padding (similar to OAEP for encryption) Invented (and proved secure) by Bellare and Rogaway • Also inventors of OAEP and HMAC Forging sigs w/ "textbook RSA" • Pick random sig R • Let message M=R" mod N • (M,R) is valid sig pair! Modifying sigs ("blinding") • Given \(\text{or} = M^2 \) mod N • Compute \(X = R^2 \) mod N • Let \(\text{or} = R^2 \) mod N • Let \(\text{or} = R^2 \) mod N • Let \(\text{or} = R^2 \) mod N • Let \(\text{or} = R^2 \) mod N • Let \(\text{or} = R^2 \) mod N • Note \(\text{or} = R^2 \) \(\text{or} = R^2 \) mod N • Note \(\text{or} = R^2 \) \(\text{or} = R^2 \) mod N