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Overview

Today: Math basics (Sections 2.1-2.3)

To do before Thursday:
● Study for first quiz (based on HW1 problems)
● Read Sections 3.1, 3.2 (can skip Hill Cipher), and 3.5

Longer term:
● Start phase 1 of project (handout - design and threat model)

The Big Picture...
Messages are typically strings of symbols from a finite alphabet
● Strings from the set of 26 letters (“classical cryptography”)
● Strings of bytes (256 possible values for each byte)
● Strings of larger blocks (e.g., 128-bit blocks for AES)

Problem: Doing arithmetic with values takes you out of the allowed range
● Caesar cipher adds 3 to each letter: 24 + 3 = 27  ←  oops - not a valid letter!

Solution:
● View infinite number line in “pieces” of appropriate size
● All pieces give different representatives of same alphabet
● So above, 27=26+1 is treated the same as 1

0 26 52 78-52 -26

0..25 26 + (0..25)

Modular arithmetic - more useful than just “working with a finite alphabet”
You have all seen this before: Do you remember where?



Some Basic Ideas and Definitions
Divisibility, multiples, divisors, ...

Terminology: For integers a, b, and m, if a=m*b then
● a is a multiple of b
● b divides a   (written b | a)
● b is a divisor of a
● b is a factor of a

Every integer has a set of positive divisors (incl. at least 1)
● Example 1: Divisors of 15 are 1,3,5,15
● Example 2: Divisors of 18 are 1, 2, 3, 6, 9, 18
● Often interested in greatest common divisor (gcd(15,18)=3)

Modular Arithmetic
Definitions and some basic properties

For any a and b, there is a unique r such that
a = q*b + r,   where 0 ≤ r < b  (and q = ⎣a/b⎦ )
● q is the quotient
● r is the remainder

Two related notions:

● mod as a binary operator
○ a mod b is the remainder of a divided by b
○ 7 mod 5 = 2  ;  24 mod 7 = 3  ;  27 mod 9 = 0

● mod as a congruence relation
○ a ≡ b (mod n)  if and only if  (a-b) | n
○ 7 ≡ 12 (mod 5)  ; 24 ≡ 3 (mod 7)  ;  128 ≡ 428 (mod 100)

Modular Arithmetic
Definitions and some basic properties

For any a and b, there is a unique r such that
a = q*b + r,   where 0 ≤ r < b  (and q = ⎣a/b⎦ )
● q is the quotient
● r is the remainder

Two related notions:

● mod as a binary operator
○ a mod b is the remainder of a divided by b
○ 7 mod 5 = 2  ;  24 mod 7 = 3  ;  27 mod 9 = 0

● mod as a congruence relation
○ a ≡ b (mod n)  if and only if  (a-b) | n
○ 7 ≡ 12 (mod 5)  ; 24 ≡ 3 (mod 7)  ;  128 ≡ 428 (mod 100)

Warning: Best to always work with 
non-negative numbers with mod. Some 
languages (like C) say mod definition on 
negative numbers is “implementation 
dependent” (with certain restrictions - but 
it’s unpredictable!).



Greatest Common Divisor
A very important algorithm!

Numbers a and b are relatively 
prime if gcd(a,b) = 1

How to compute gcd fast?

Euclid’s Algorithm

Assuming a > b:

gcd(a,b):

   if (b | a) then return b

   else return gcd(b, (a mod b))

Running time: O(log b)

a             b           (a mod  b)

522          64                10

64           10                 4

10             4                 2

4             2                 0

Example: gcd(522,64)

a mod b = 0 means b | a, so done
    Final answer gcd(522,64) = 2

You try one:

Compute gcd(79,64)

Modular Arithmetic
A very important property

If you want the result of an algebraic formula modulo n, it doesn’t 
matter if you do the mod operation mid-computation or just at the end!

   So ((x*y+321)*71+z ) mod n = ((x*y) mod n + 321)*31 + z) mod n

Application: Keep all intermediate results small

Example: I want to compute 123416 mod 10000
● 123416 is 50 digits long  →  overflows 64-bit integer
● Note that 123416 = (((12342)2)2)2

● Can do (((12342 mod 10000)2 mod 10000)2 mod 10000)2 mod 10000
● No intermediate result can be larger than 99992 = 99,980,001 (8 digits)



Modular Arithmetic
Other properties of modular addition

The “mod 7” addition table (notice how easy to do in Python!)

>>> np.asmatrix([[(i+j)%7 for j in range(7)] for i in range(7)])

matrix([[0, 1, 2, 3, 4, 5, 6],

        [1, 2, 3, 4, 5, 6, 0],

        [2, 3, 4, 5, 6, 0, 1],

        [3, 4, 5, 6, 0, 1, 2],

        [4, 5, 6, 0, 1, 2, 3],

        [5, 6, 0, 1, 2, 3, 4],

        [6, 0, 1, 2, 3, 4, 5]])

Properties
● 0 is the “identity”  (for every x, 0 + x mod 7 = x)
● Each row/column contains all values, shifted by an appropriate amount

○ Each row/column includes a 0  →  each element has an additive inverse
● Not obvious from table, but: operation is associative and commutative

Note: These properties hold for any modulus, not just 7

The “mod 7” multiplication table

>>> np.asmatrix([[(i*j)%7 for j in range(7)] for i in range(7)])

matrix([[0, 0, 0, 0, 0, 0, 0],

        [0, 1, 2, 3, 4, 5, 6],

        [0, 2, 4, 6, 1, 3, 5],

        [0, 3, 6, 2, 5, 1, 4],

        [0, 4, 1, 5, 2, 6, 3],

        [0, 5, 3, 1, 6, 4, 2],

        [0, 6, 5, 4, 3, 2, 1]])

Properties of the “mod 7” multiplication table - for all elements except 0:
● 1 is the “identity”  (for every x, 1 * x mod 7 = x)
● Each row/column contains all values, permuted

○ Each row/column includes a 1  →  each element has a multiplicative inverse

Not obvious from table, but: operation is associative and commutative

Modular Arithmetic
Other properties of modular multiplication

Do these properties hold for any modulus?

The “mod 8” multiplication table

>>> np.asmatrix([[(i*j)%8 for j in range(8)] for i in range(8)])

matrix([[0, 0, 0, 0, 0, 0, 0, 0],

        [0, 1, 2, 3, 4, 5, 6, 7],

        [0, 2, 4, 6, 0, 2, 4, 6],

        [0, 3, 6, 1, 4, 7, 2, 5],

        [0, 4, 0, 4, 0, 4, 0, 4],

        [0, 5, 2, 7, 4, 1, 6, 3],

        [0, 6, 4, 2, 0, 6, 4, 2],

        [0, 7, 6, 5, 4, 3, 2, 1]])

Next: Try a few more moduli in Python…   What’s the pattern for rows with 1’s?

Modular Arithmetic
Other properties of modular multiplication

Row doesn’t contain a 1!



The “mod 8” multiplication table

>>> np.asmatrix([[(i*j)%8 for j in range(8)] for i in range(8)])

matrix([[0, 0, 0, 0, 0, 0, 0, 0],

        [0, 1, 2, 3, 4, 5, 6, 7],

        [0, 2, 4, 6, 0, 2, 4, 6],

        [0, 3, 6, 1, 4, 7, 2, 5],

        [0, 4, 0, 4, 0, 4, 0, 4],

        [0, 5, 2, 7, 4, 1, 6, 3],

        [0, 6, 4, 2, 0, 6, 4, 2],

        [0, 7, 6, 5, 4, 3, 2, 1]])

Next: Try a few more moduli in Python…   What’s the pattern for rows with 1’s?

Modular Arithmetic
Other properties of modular multiplication

Row doesn’t contain a 1!

Answer: Row x has a 1 (i.e., x has a mult inverse) if and only if x is 
relatively prime to the modulus.

Important fact: Can use the “Extended Euclidean” algorithm to find x’s 
inverse mod n in O(log n) time.    (details in book)

Number Sizes
Estimating with powers of two

Important values to know cold:
● 210 is “about 1000”  (actually 1024)
● 220 is “about a million” (actually 1,048,576)
● 230 is “about a billion”
● 240 is “about a trillion”
● …

And the converse for dealing with base 2 logarithms:
● log2(1000) is about 10
● log2(1,000,000) is about 20
● log2(1,000,000,000) is about 30
● ...

Number Sizes
Using for quick estimates - crypto example

Consider a “key cracking” machine that is clocked at 1 
GHz, so can test 1 billion keys per second.

Attacking a cipher with 40-bit keys.

Question: How long to test all possible keys?
1. A billion keys/second is about 230 keys/second

2. There are 240 different 40-bit keys

3. Time required is then 240 / 230 = 210 seconds

4. 210 seconds is about 1,000 seconds

5. An hour has 3,600 seconds, so this is just a little over 15 minutes 
(not a very secure cipher!)



Number Sizes
More precise estimates

Know powers of 2 up to 210 - a few important ones:
● 24 = 16
● 25 = 32
● 28 = 256

Examples:
● What is 225?  220∙25 = approx 32 million
● What is 238?  230∙28 = approx 256 billion

Relation to a few other measures:
● One hour is 3,600 seconds, which is approx 212

● One day is 86,400, which is approx 216  (closer: 216.4)
● One year is approx 225 seconds

So 8 trillion cycles on a 1GHz machine takes:
243 / 230 = 213 seconds   →   about 2 hours

Number Sizes
Algorithm understanding example

Need the multiplicative inverse of a number with 55-bit modulus

“Counting down” algorithm:
● For modulus n takes time Θ(n) time
● n = 255  →  255 computational steps
● At a billion steps / second  →  255/230 = 225 seconds (1 year)

Euclid’s algorithm:
● For modulus n, takes time O(log n)  (specifically, < 2*log2(n) steps)
● n is 255  →  less than 2*55 = 110 steps
● At a billion steps / second  →  Less than a millionth of a second

Your turn!

DES (which we’ll look at next week) uses a 56-bit key. In 1998 a 
machine (“Deep Crack”) was built that could test 90 billion keys per 
second.

How long does it take to test all keys? (Hint: round values sensibly!)



Number Sizes
Moore’s Law

Example use:
9 years from now, we will have had 6 
“doublings”, so computing power will be 
26 = 64 times faster than today.

Can this continue indefinitely?
No.

Are we near the end of Moore’s Law?
Opinions vary....

Moore’s Law states that computing power double 
approximately every 18 months (1.5 years).

Your turn #2! Moore’s Law and flipped around
A reasonable “clock speed” today is around 2-4 GHz, so assume that is the 
lower bound for a single core to test a key (really takes longer).

Custom hardware can give you a speed boost of, say, a million times.

Question: Assuming Moore’s Law continues, how long a key to be safe for 
the next 30 years?  What if you wanted an extra “cushion” of a factor of 
1000?

Number Sizes
Some really big numbers (impress your friends!)

Handout: “Large Numbers” from Applied Cryptography (Schneier)

Fun with large numbers….
● Randomly guessing a DES key: Probability of getting the correct key 

is half the probability of “winning the top prize in a U.S. state lottery 
and being killed by lightning in the same day.”

● Time to go through all 128-bit values at 1 trillion/second
2128 / 240 = 288 seconds (or 288/225 = 253 years …  or 253/230 = 223 
or 8 million times the “time until the sun goes nova”)

● Factoring 1024-bit numbers (for breaking a small RSA key)
Idea: Can we make a table of all prime factorizations?
21024 entries in the table. 2265 atoms in the universe. So not even 
remotely within the realm of possibility.



Number Sizes
Some really big numbers (impress your friends!)

A final thing to think about:

Finding a multiplicative inverse with a 2048-bit modulus is a very 
common operation in cryptography.

If we didn’t know Euclid’s algorithm, how long would the “counting 
down” algorithm take?


