CSC 580 Cryptography and Computer Security

The Advanced Encryption Standard (AES)

February 7, 2017

Overview

Today

- HW3 solution review
- Brief project phase 1 discussion (more on Thurs)
- · Overview of the Java Cryptography Architecture
- AES (from handout)

To do before Tuesday:

- Study for HW3 quiz
- Start reading Chapter 7

Reminder: DES and AES for CSC 580

We will focus on how to use block ciphers securely.

Important to understand big picture issues:

- What parameters describe block ciphers?
- What properties does a good block cipher have?
- How do parameters affect those properties?
- How did parameters change historically as capabilities grew?

How block ciphers work (internals):

- We will view as a "black box" with certain I/O behavior
- Internals are interesting, but avoided here to save time

What's Wrong with DES?

Recall from last time:

- Can brute force a 56-bit key in a matter of days now
- Not designed for software
 - o Can repeat use to increase security, but inefficient

Not discussed before: Block size

- "Collision attacks" follow "birthday problem" probabilities
 - With just 23 people, 50% chance that two have the same birthday
 - Roughly square-root of "universe size" (sqrt(365) = 19.1...
- Applies to some applications of block ciphers
 - o "universe" is number of possible ciphertext outputs
 - $sqrt(2^{64}) = 2^{32}$ requirement for both time and space (memory)
- o Trivial by today's standards

Bottom line: Key is too small, block size is too small, and too inefficient...

K	e١	, S	ize

Is 128 bits enough?

2004 Estimate: \$100k machine breaks 56-bit DES key in 6 hours

What about a 128-bit key?

\$100k machine takes >10¹⁸ years [the earth is <10¹⁰ years old]

What if we spent \$100,000,000,000?

Would take >1012 years

What about Moore's law saying that in 20 years machines will be about 16,000 times faster?

Would take >108 years

OK, what about in 40 years (machines 100 million times faster)? Would still take >30,000 years

Do you really think Moore's law will last this long?

Block Size

Is 128 bits enough?

Birthday attack:

- Requires sqrt(2¹²⁸) = 2⁶⁴ time and space
 Space is 2⁶⁴ 128-bit entries, for a total of 16*2⁶⁴ = 2⁶⁸ bytes
- One terabyte is 2⁴⁰ bytes → requires 256 million terabytes
- At \$35/TB that would cost around \$9 billion (plus power, ...)

Seems pretty safe...

AES Selection Process 1993-1995: Clipper Chip fiasco 1997: Request for proposals for new standard block cipher • Must use 128-bit block • Must support 128-bit, 192-bit, and 256-bit keys • Selection process through open evaluation 1999: 15 good submissions narrowed to 5 finalists 2000: Winner selected • Winner was an algorithm named Rijndael (limited to 128-bit blocks) • Invented/submitted by Vincent Rijmen and Joan Daemen (Belgians) Important points: • Very open, public process • No secret modifications • Not rushed

AES - Some Final Points

In 20 years, no practical cryptanalytic attacks discovered

Approved for protecting classified information

- 128 bit keys for SECRET
- 192 or 256 bit keys for TOP SECRET
- Note: implementation must be approved

Efficiency

- Works on byte/word units: Efficient in software!
- $\bullet \quad \text{Widespread standard} \ \rightarrow \ \text{special fast CPU instructions now}$
 - Intel AES-NI instructions: over 10 gigabits/sec on a single core!
 - OpenSSL demo...
- Still simple enough for special-purpose hardware
 - 30+ Gbps possible