
CSC 580
Cryptography and Computer Security

Random Bit Generators
(Sections 8.1-8.3)

February 23, 2017

Overview

Today:
● HW 5 quiz

● Pseudorandom generation - concepts and simple techniques

To do before Thursday:
● Do HW 6

● Read “Security Models” handout

● Finish project phase 2 - report submitted in class, code in BitBucket

What do we mean by “randomness”?
Common perception - random physical events
● Flipping a coin
● Rolling a die
● Blind draw from a bag

Some properties:
● Statistically uniform

○ Non-uniform randomness is possible, but less interesting in crypto
● Independence
● Unpredictability (next numbers can’t be guessed)

Key concept: Entropy
● Measures amount of randomness from a random source
● Example 1: 64 true random bits has 64-bit of entropy
● Example 2: English language entropy is about 2-bits per letter

Random Number Generators
Delivers an unbounded-length sequence (stream)

TRNG - True Random Number Generator
● Sometimes called NRBG (non-deterministic random bit generator)
● Based on physical randomness
● OS can gather physical randomness - disk timing, mouse moves, …

○ /dev/random in Linux - blocking random source
● Can also be special-purpose device (noisy diode,... even a lava lamp)

PRNG - Pseudo Random Number Generator
● Sometimes called DRBG (deterministic random bit generator)
● Sequence computed from a seed
● Consumer of stream typically doesn’t know seed
● Computing again with same seed gives same sequence (repeatable)

TRNG/PRNG hybrids
● True randomness “mixed in” to pseudorandom generator
● /dev/urandom in Linux - non-blocking random source

Some applications and properties

What properties are needed in different applications?

Application Good Statistics Unpredictable (fwd) Repeatable

Random simulation Must have No need Depends

Nonce Must have Must have No need

Stream cipher Must have Must have Must have

Observations
● Cannot use a TRNG for a steam cipher (can for others)
● All applications need good statistical properties (uniformity,

independence)
● In crypto applications, unpredictability is important

A warning when thinking about PRNGs

If numbers are computed, they aren’t random!

Anyone who considers arithmetical methods of producing random
digits is, of course, in a state of sin. For, as has been pointed out
several times, there is no such thing as a random number — there
are only methods to produce random numbers, and a strict
arithmetic procedure of course is not such a method. - John von
Neumann, 1951

Computation cannot increase entropy
● 1000 bits output from a PRNG with 16-bit

seed has at most 16 bits of entropy!
Deterministic
computation

b bits entropy in

≤b bits entropy out

Good PRNG Importance

Security often fails just because of bad PRNG use

Can fail because of either:
● Bad seeding (not random or not large enough)
● Bad algorithm

Example 1: The original SSL implementation (Netscape Navigator)
● Seeded with process id (15 bits) and current time (a few bits or uncertainty)
● Made cryptographic keys guessable - completely destroyed security

Example 2: Bad algorithm in NIST standards - Dual EC DRBG
● Exposed as a possible backdoor after Snowden leaks

Dual EC DRBG
The potential backdoor is exposed

People have always worried
about NSA backdoors - this
one appears to have been
real!

Was adopted by NIST as a
standard.

Withdrawn from standard
after discoveries

But… Dual EC DRBG is
super-slow anyway - surely
no one uses it… right?

Dual EC DRBG
Oops - people DID use it - maybe even unknowingly!

Not only used, but was the
default DRBG in RSA’s
BSAFE library!

Fast PRNG from a block cipher

Widely-used technique: CTR mode
● Key and initial counter are seed
● Basically the XOR pad from CTR mode

(ignoring plaintext)

Key property: If AES-CTR mode is a secure
encryption scheme (technically, is IND-CPA
secure) then this is a secure PRNG

To think about: If K is fixed and secret
(embedded in hardware) and only V is the
seed, can it be “backdoored” (HW problem)

